Predation by alien largemouth bass, Micropterus salmoides Lacepéde 1802 (Centrarchidae: Perciformes), on indigenous marine fish species in the Kowie System, South Africa
- Authors: Magoro, Mandla Leon
- Date: 2014
- Subjects: Largemouth bass -- South Africa -- Port Alfred , Largemouth bass -- Food -- South Africa -- Port Alfred , Estuarine fishes -- South Africa -- Port Alfred , Estuarine fishes -- Predators of , Centrarchidae , Fishes -- Effect of human beings on
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5851 , http://hdl.handle.net/10962/d1011939 , Largemouth bass -- South Africa -- Port Alfred , Largemouth bass -- Food -- South Africa -- Port Alfred , Estuarine fishes -- South Africa -- Port Alfred , Estuarine fishes -- Predators of , Centrarchidae , Fishes -- Effect of human beings on
- Description: Estuaries serve as nursery areas for a large number of estuary-associated fish species. Some of these taxa also use river catchments as nursery areas. During the upstream migration of this latter group, the juveniles are prone to predation by native and alien predatory fish inhabiting the system. The rate of invasion of ecosystems by alien organisms can be directly linked to anthropogenic influences, including both intentional and unintentional introductions by alien organisms into new regions. The largemouth bass, Micropterus salmoides, is a facultative piscivorous fish that has been successfully introduced worldwide for the main purpose of sport fishing. Where introduced, it has been found to negatively impact native fish and invertebrate species through predation, competitive exclusion and displacement of indigenous fish species. The aim of this thesis was to investigate the predatory impact of largemouth bass on the estuary-associated Cape moony Monodactylus falciformis, Cape stumpnose Rhabdosargus holubi and freshwater mullet Myxus capensis in the lower Kowie River of the Eastern Cape Province, South Africa. A combination of approaches was employed during this study. Stomach contents, stable isotopes and fatty acid analyses were employed for the reconstruction of the diet of largemouth bass. Acoustic telemetry was used to elucidate largemouth bass movements, particularly their ability to enter the upper reaches of the Kowie Estuary. Stomach contents and stable isotopes analyses showed that M. salmoides exhibit an ontogenic shift in diet, with small and medium sized individuals consuming the higher proportion of fish prey, while large sized individuals mostly consumed invertebrates such as crabs (Potamonautes sidneyi) and Odonata larvae, while consuming only a small proportion of estuary-associated fish. Fatty acid analysis only showed a direct connection between the fatty acid profiles of largemouth bass and those of M. capensis and M. falciformis. The acoustic telemetry results indicated that some M. salmoides individuals periodically move into the upper reaches of the estuary following river flood events. The results obtained from all these approaches highlight the risk posed by largemouth bass introductions on indigenous fish species, particularly those that enter the areas occupied by these top predators.
- Full Text:
- Date Issued: 2014
- Authors: Magoro, Mandla Leon
- Date: 2014
- Subjects: Largemouth bass -- South Africa -- Port Alfred , Largemouth bass -- Food -- South Africa -- Port Alfred , Estuarine fishes -- South Africa -- Port Alfred , Estuarine fishes -- Predators of , Centrarchidae , Fishes -- Effect of human beings on
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5851 , http://hdl.handle.net/10962/d1011939 , Largemouth bass -- South Africa -- Port Alfred , Largemouth bass -- Food -- South Africa -- Port Alfred , Estuarine fishes -- South Africa -- Port Alfred , Estuarine fishes -- Predators of , Centrarchidae , Fishes -- Effect of human beings on
- Description: Estuaries serve as nursery areas for a large number of estuary-associated fish species. Some of these taxa also use river catchments as nursery areas. During the upstream migration of this latter group, the juveniles are prone to predation by native and alien predatory fish inhabiting the system. The rate of invasion of ecosystems by alien organisms can be directly linked to anthropogenic influences, including both intentional and unintentional introductions by alien organisms into new regions. The largemouth bass, Micropterus salmoides, is a facultative piscivorous fish that has been successfully introduced worldwide for the main purpose of sport fishing. Where introduced, it has been found to negatively impact native fish and invertebrate species through predation, competitive exclusion and displacement of indigenous fish species. The aim of this thesis was to investigate the predatory impact of largemouth bass on the estuary-associated Cape moony Monodactylus falciformis, Cape stumpnose Rhabdosargus holubi and freshwater mullet Myxus capensis in the lower Kowie River of the Eastern Cape Province, South Africa. A combination of approaches was employed during this study. Stomach contents, stable isotopes and fatty acid analyses were employed for the reconstruction of the diet of largemouth bass. Acoustic telemetry was used to elucidate largemouth bass movements, particularly their ability to enter the upper reaches of the Kowie Estuary. Stomach contents and stable isotopes analyses showed that M. salmoides exhibit an ontogenic shift in diet, with small and medium sized individuals consuming the higher proportion of fish prey, while large sized individuals mostly consumed invertebrates such as crabs (Potamonautes sidneyi) and Odonata larvae, while consuming only a small proportion of estuary-associated fish. Fatty acid analysis only showed a direct connection between the fatty acid profiles of largemouth bass and those of M. capensis and M. falciformis. The acoustic telemetry results indicated that some M. salmoides individuals periodically move into the upper reaches of the estuary following river flood events. The results obtained from all these approaches highlight the risk posed by largemouth bass introductions on indigenous fish species, particularly those that enter the areas occupied by these top predators.
- Full Text:
- Date Issued: 2014
Spatio-temporal dynamics of ichthyoplankton in the Kowie estuary, South Africa
- Authors: Kruger, Michelle
- Date: 2010
- Subjects: Fishes -- Larvae -- South Africa -- Port Alfred , Estuarine fishes -- South Africa -- Port Alfred
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5319 , http://hdl.handle.net/10962/d1005164 , Fishes -- Larvae -- South Africa -- Port Alfred , Estuarine fishes -- South Africa -- Port Alfred
- Description: Ichthyoplankton dynamics in the permanently open Kowie Estuary, in the warm temperate region of South Africa was investigated. The composition, abundance, distribution and seasonality of larval fishes were studied over a two year period between 2004 and 2006. Additionally, tidal exchange of ichthyoplankton and the use of frontal zones in the mouth region of the estuary were also explored between 2008 and 2009. Temporal and spatial trends in occurrence of larval fishes within the estuary and associated marina were obtained from data collected seasonally using boat-based plankton netting at 14 sampling stations along the length of the estuary. A total of 11 128 larval fishes were collected, representing 23 families and 38 taxa. Clupeidae and Gobiidae were the dominant fish families, contributing 47.0 % and 24.7 % respectively to the total catch. Estuarine resident species dominated the overall catch (91 %). A notable absence of older stage larvae and early juveniles characterised the artificial channels of the marina and estuary mouth region. This was attributed to the absence of a shallow, marginal water habitat typical of successful estuarine nursery areas. Tidal exchange of larval fishes was investigated in the Kowie Estuary using a new technique. A set of drifting light traps were set repetitively on the ebb and flood tide every second night for two consecutive 14 day periods during the peak estuarine recruitment period. A total of 553 larval fishes were caught during the study, representing nine families and 26 species. Blenniidae and Clupeidae dominated the catches. Family and species occurrence changed with tide state. Species richness (d) and diversity (H’) varied with tide and was highest on flood tides. Estuary-dependent species, such as Omobranchus woodii were more dominant on flood tides, whilst larvae of marine-spawned species, such as Sardinops sagax, were dominant on the ebb tide. Light trap catches yielded a different composition in terms of development stage / size and species, when compared to towed net studies. Towed plankton nets were again used to study the shear fronts that characterise the mouth region of the canalised Kowie Estuary. It was hypothesised that the convergence zone of the front provides feeding opportunities for ichthyoplankton. Ichthyoplankton, zooplankton and phytoplankton was collected from within and immediately outside of the convergence zone during frontal conditions. Species specific distribution trends emerged from this study. Postflexion larvae and early juvenile stages of the estuary dependent Mugilidae were only present in the foam line of the convergence zones. Some known predators of ichthyoplankton were also present in slightly higher numbers in the convergence zone (isopods) while other predators such as mysid shrimps, chaetognaths and cnidarians were more abundant out of the convergence zone. It appears that these zones may provide access to temporary food patches in the lower estuary but will be accompanied by a trade-off with increased isopod predators. The Kowie Estuary is a heavily impacted system and lack of adequate freshwater supply; artificial channelling and pollution ultimately have a negative impact of the success of this system as a nursery area. Rehabilitation of marginal areas in the lower estuary and marina is suggested as remedial action to re-establish the integrity of the nursery function this system could offer.
- Full Text:
- Date Issued: 2010
- Authors: Kruger, Michelle
- Date: 2010
- Subjects: Fishes -- Larvae -- South Africa -- Port Alfred , Estuarine fishes -- South Africa -- Port Alfred
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5319 , http://hdl.handle.net/10962/d1005164 , Fishes -- Larvae -- South Africa -- Port Alfred , Estuarine fishes -- South Africa -- Port Alfred
- Description: Ichthyoplankton dynamics in the permanently open Kowie Estuary, in the warm temperate region of South Africa was investigated. The composition, abundance, distribution and seasonality of larval fishes were studied over a two year period between 2004 and 2006. Additionally, tidal exchange of ichthyoplankton and the use of frontal zones in the mouth region of the estuary were also explored between 2008 and 2009. Temporal and spatial trends in occurrence of larval fishes within the estuary and associated marina were obtained from data collected seasonally using boat-based plankton netting at 14 sampling stations along the length of the estuary. A total of 11 128 larval fishes were collected, representing 23 families and 38 taxa. Clupeidae and Gobiidae were the dominant fish families, contributing 47.0 % and 24.7 % respectively to the total catch. Estuarine resident species dominated the overall catch (91 %). A notable absence of older stage larvae and early juveniles characterised the artificial channels of the marina and estuary mouth region. This was attributed to the absence of a shallow, marginal water habitat typical of successful estuarine nursery areas. Tidal exchange of larval fishes was investigated in the Kowie Estuary using a new technique. A set of drifting light traps were set repetitively on the ebb and flood tide every second night for two consecutive 14 day periods during the peak estuarine recruitment period. A total of 553 larval fishes were caught during the study, representing nine families and 26 species. Blenniidae and Clupeidae dominated the catches. Family and species occurrence changed with tide state. Species richness (d) and diversity (H’) varied with tide and was highest on flood tides. Estuary-dependent species, such as Omobranchus woodii were more dominant on flood tides, whilst larvae of marine-spawned species, such as Sardinops sagax, were dominant on the ebb tide. Light trap catches yielded a different composition in terms of development stage / size and species, when compared to towed net studies. Towed plankton nets were again used to study the shear fronts that characterise the mouth region of the canalised Kowie Estuary. It was hypothesised that the convergence zone of the front provides feeding opportunities for ichthyoplankton. Ichthyoplankton, zooplankton and phytoplankton was collected from within and immediately outside of the convergence zone during frontal conditions. Species specific distribution trends emerged from this study. Postflexion larvae and early juvenile stages of the estuary dependent Mugilidae were only present in the foam line of the convergence zones. Some known predators of ichthyoplankton were also present in slightly higher numbers in the convergence zone (isopods) while other predators such as mysid shrimps, chaetognaths and cnidarians were more abundant out of the convergence zone. It appears that these zones may provide access to temporary food patches in the lower estuary but will be accompanied by a trade-off with increased isopod predators. The Kowie Estuary is a heavily impacted system and lack of adequate freshwater supply; artificial channelling and pollution ultimately have a negative impact of the success of this system as a nursery area. Rehabilitation of marginal areas in the lower estuary and marina is suggested as remedial action to re-establish the integrity of the nursery function this system could offer.
- Full Text:
- Date Issued: 2010
- «
- ‹
- 1
- ›
- »