Thermal tolerance and the potential effects of climate change on coastal intertidal and estuarine organisms in the Kariega Estuary and adjacent intertitdal coastline, Eastern Cape, South Africa
- Authors: Van der Walt, Kerry-Ann
- Date: 2020
- Subjects: Ectotherms -- Climatic factors , Ectotherms -- Effect of temperature on , Fishes -- Climatic factors , Fishes -- Effect of temperature on , Climatic changes -- South Africa -- Eastern Cape
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/148459 , vital:38741
- Description: Temperature changes due to the effects of climate change are evident on all continents and oceans. As a result, there is a growing concern over how marine ectotherms will respond to extreme or fluctuating environmental temperatures. Temperature changes have strong direct and indirect effects on individual, population, and ecosystem functioning traits. A multi-scale approach determining the thermal tolerance and performance of several marine ectotherms belonging to different coastal habitats is rarely considered in thermal physiology studies but is effective for an integrated ecosystem assessment. As such, for this thesis, I aimed to quantify and compare the thermal tolerance and performance of a range of coastal marine ectotherms (fish and macro-invertebrates) with different biogeographical distributions from estuarine, subtidal and rocky intertidal habitats to available and projected in situ temperature data. This was also undertaken to gauge the local vulnerability of each species across summer and winter in a warm-temperate region of South Africa. This was done using a multi-method physiological approach, which included the dynamic method (CTmax and CTmin), static respirometry and maximum heart rate fHmax). Results of the dynamic method on several fish and macro-invertebrate species indicated that there are differences in thermal tolerance according to taxonomy, biogeography and habitat for both summer and winter. Macro-invertebrate species generally had higher CTmax endpoints, lower CTmin endpoints, higher upper and lower breadths in tolerance, higher upper and lower thermal safety margins and higher thermal scopes than the fish species. This could be a result of the macro-invertebrate species studied being less mobile compared with fish species (which are able to move to more favourable conditions) as well as having broader geographical distributions. In addition, macro-invertebrates from the intertidal rock pool habitat (Palaemon peringueyi; Pernaperna) were more tolerant of high and low temperatures compared with the macro-invertebrates from the estuarine habitat (Clibanarius virescens; Parasesarma catenatum; Upogebia africana). Overall, macro-invertebrates, with the exception of Parechinus angulosus, investigated in this study indicated that current temperatures and projected climate change scenarios across seasons would not have a significant impact on them and that they are highly adaptable to changing temperature regimes. This sign of high tolerance was further supported by the heart rates of P. perna and P. catenatum under an acute increase in temperature (1.0 °C.h-1) which showed individuals of each species physiologically depressing their metabolism until a final Arrhenius breakpoint temperature was reached (TAB). Among the fish species investigated in this study, tropical species (Chaetodon marleyi; Kuhlia mugil) had the highest CTmax and CTmin endpoints when compared with the temperate (Diplodus capensis; Sarpa salpa), warm-water endemic (Chelon dumerili; Rhabdosargus holubi) and cool-water endemic (Chelon richardsonii) fishes. This suggests that due to their lower breadths in tolerance and thermal safety margins being small, tropical species may be less tolerant of cold temperatures and thermal variability, especially in the form of summer upwelling events which are expected to increase in intensity and frequency in this region as a result of anthropogenic climate change effects. On the other hand, however, if a temperature increase of 2.0 - 4.0 °C takes place at the end of the century as predicted by the Intergovernmental Panel on Climate Change (IPCC), it is likely that tropical species such as C. marleyi will become more common. Temperate species such as D. capensis and S. salpa were able to tolerate a wide range of temperatures (wide thermal scope) compared with the other fish species. These findings may suggest that D. capensis and S. salpa are thermally resilient and may be the least vulnerable to climate change effects and temperature variability. When evaluating the different life stages of D. capensis, however, using the dynamic method (juveniles and adults), static respirometry (juveniles) and maximum heart rate (adults), results suggested that juveniles of this temperate species will be more resilient to increases in ocean temperatures compared with the adults because they have a higher thermal tolerance (CTmax/TCRIT) and a greater metabolic scope (TOPT) at higher temperatures. For both juveniles and adults, temperatures beyond 28.0 °C (upper Tpej; Tarr) will have a significant impact on their physiology. Using a multi-scale and multi-method approach thus helped to identify which species or community may be vulnerable to the effects of climate change within shallow coastal environments in this warm-temperate climate change hotspot. Adopting this type of approach will assist policy makers in developing comprehensive climate change management frameworks for coastal ecosystems globally and around South Africa.
- Full Text:
- Date Issued: 2020
- Authors: Van der Walt, Kerry-Ann
- Date: 2020
- Subjects: Ectotherms -- Climatic factors , Ectotherms -- Effect of temperature on , Fishes -- Climatic factors , Fishes -- Effect of temperature on , Climatic changes -- South Africa -- Eastern Cape
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/148459 , vital:38741
- Description: Temperature changes due to the effects of climate change are evident on all continents and oceans. As a result, there is a growing concern over how marine ectotherms will respond to extreme or fluctuating environmental temperatures. Temperature changes have strong direct and indirect effects on individual, population, and ecosystem functioning traits. A multi-scale approach determining the thermal tolerance and performance of several marine ectotherms belonging to different coastal habitats is rarely considered in thermal physiology studies but is effective for an integrated ecosystem assessment. As such, for this thesis, I aimed to quantify and compare the thermal tolerance and performance of a range of coastal marine ectotherms (fish and macro-invertebrates) with different biogeographical distributions from estuarine, subtidal and rocky intertidal habitats to available and projected in situ temperature data. This was also undertaken to gauge the local vulnerability of each species across summer and winter in a warm-temperate region of South Africa. This was done using a multi-method physiological approach, which included the dynamic method (CTmax and CTmin), static respirometry and maximum heart rate fHmax). Results of the dynamic method on several fish and macro-invertebrate species indicated that there are differences in thermal tolerance according to taxonomy, biogeography and habitat for both summer and winter. Macro-invertebrate species generally had higher CTmax endpoints, lower CTmin endpoints, higher upper and lower breadths in tolerance, higher upper and lower thermal safety margins and higher thermal scopes than the fish species. This could be a result of the macro-invertebrate species studied being less mobile compared with fish species (which are able to move to more favourable conditions) as well as having broader geographical distributions. In addition, macro-invertebrates from the intertidal rock pool habitat (Palaemon peringueyi; Pernaperna) were more tolerant of high and low temperatures compared with the macro-invertebrates from the estuarine habitat (Clibanarius virescens; Parasesarma catenatum; Upogebia africana). Overall, macro-invertebrates, with the exception of Parechinus angulosus, investigated in this study indicated that current temperatures and projected climate change scenarios across seasons would not have a significant impact on them and that they are highly adaptable to changing temperature regimes. This sign of high tolerance was further supported by the heart rates of P. perna and P. catenatum under an acute increase in temperature (1.0 °C.h-1) which showed individuals of each species physiologically depressing their metabolism until a final Arrhenius breakpoint temperature was reached (TAB). Among the fish species investigated in this study, tropical species (Chaetodon marleyi; Kuhlia mugil) had the highest CTmax and CTmin endpoints when compared with the temperate (Diplodus capensis; Sarpa salpa), warm-water endemic (Chelon dumerili; Rhabdosargus holubi) and cool-water endemic (Chelon richardsonii) fishes. This suggests that due to their lower breadths in tolerance and thermal safety margins being small, tropical species may be less tolerant of cold temperatures and thermal variability, especially in the form of summer upwelling events which are expected to increase in intensity and frequency in this region as a result of anthropogenic climate change effects. On the other hand, however, if a temperature increase of 2.0 - 4.0 °C takes place at the end of the century as predicted by the Intergovernmental Panel on Climate Change (IPCC), it is likely that tropical species such as C. marleyi will become more common. Temperate species such as D. capensis and S. salpa were able to tolerate a wide range of temperatures (wide thermal scope) compared with the other fish species. These findings may suggest that D. capensis and S. salpa are thermally resilient and may be the least vulnerable to climate change effects and temperature variability. When evaluating the different life stages of D. capensis, however, using the dynamic method (juveniles and adults), static respirometry (juveniles) and maximum heart rate (adults), results suggested that juveniles of this temperate species will be more resilient to increases in ocean temperatures compared with the adults because they have a higher thermal tolerance (CTmax/TCRIT) and a greater metabolic scope (TOPT) at higher temperatures. For both juveniles and adults, temperatures beyond 28.0 °C (upper Tpej; Tarr) will have a significant impact on their physiology. Using a multi-scale and multi-method approach thus helped to identify which species or community may be vulnerable to the effects of climate change within shallow coastal environments in this warm-temperate climate change hotspot. Adopting this type of approach will assist policy makers in developing comprehensive climate change management frameworks for coastal ecosystems globally and around South Africa.
- Full Text:
- Date Issued: 2020
The genetic stock structure and distribution of Chrysoblephus Puniceus, a commercially important transboundary linefish species, endemic to the South West Indian Ocean
- Authors: Duncan, Murray Ian
- Date: 2014
- Subjects: Sparidae , Fishes -- Indian Ocean , Fish populations , Fishery management , Fish stock assessment -- South Africa , Fish stock assessment -- Mozambique , Overfishing , Habitat conservation , Fishes -- Genetics , Fishes -- Climatic factors , Fishes -- Variation , Fishes -- Migration
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5360 , http://hdl.handle.net/10962/d1011868 , Sparidae , Fishes -- Indian Ocean , Fish populations , Fishery management , Fish stock assessment -- South Africa , Fish stock assessment -- Mozambique , Overfishing , Habitat conservation , Fishes -- Genetics , Fishes -- Climatic factors , Fishes -- Variation , Fishes -- Migration
- Description: Chrysoblephus puniceus is an over-exploited linefish species, endemic to the coastlines off southern Mozambique and eastern South Africa. Over-exploitation and habitat loss are two of the biggest threats to the sustainability of fisheries globally. Assessing the genetic stock structure (a prerequisite for effective management) and predicting climate related range changes will provide a better understanding of these threats to C. puniceus which can be used to improve the sustainability of the fishery. Two hundred and eighty four genetic samples were collected from eight sampling sites between Ponta da Barra in Mozambique and Coffee Bay in South Africa. The mitochondrial control region and ten microsatellite loci were amplified to analyse the stock structure of C. puniceus. The majority of microsatellite and mtDNA pairwise population comparisons were not significant (P > 0.05) although Xai Xai and Inhaca populations had some significant population comparisons for mtDNA (P < 0.05). AMOVA did not explain any significant variation at the between groups hierarchical level for any pre-defined groupings except for a mtDNA grouping which separated out Xai Xai and Inhaca from other sampling sites. SAMOVA, isolation by distance tests, structure analysis, principle component analysis and spatial autocorrelation analysis all indicated a single population of C. puniceus as being most likely. The migrate-n analysis provided evidence of current driven larval transport, with net migration rates influenced by current dynamics.Two hundred and thirty six unique presence points of C. puniceus were correlated with seasonal maximum and minimum temperature data and bathymetry to model the current distribution and predict future distribution changes of the species up until 2030. Eight individual species distribution models were developed and combined into a mean ensemble model using the Biomod2 package. Winter minimum temperature was the most important variable in determining models outputs. Overall the ensemble model was accurate with a true skills statistic score of 0.962. Binary transformed mean ensemble models predicted a northern and southern range contraction of C. puniceus' distribution of 15 percent; by 2030. The mean ensemble probability of occurrence models indicated that C. puniceus' abundance is likely to decrease off the southern Mozambique coastline but remain high off KwaZulu-Natal. The results of the genetic analysis support the theory of external recruitment sustaining the KwaZulu Natal fishery for C. puniceus. While the high genetic diversity and connectivity may make C. puniceus more resilient to disturbances, the loss of 15 percent; distribution and 11 percent; genetic diversity by 2030 will increase the species vulnerability. The decrease in abundance of C. puniceus off southern Mozambique together with current widespread exploitation levels could result in the collapse of the fishery. A single transboundary stock of C. puniceus highlights the need for co-management of the species. A combined stock assessment between South Africa and Mozambique and the development of further Marine Protected Areas off southern Mozambique are suggested as management options to minimise the vulnerability of this species.
- Full Text:
- Date Issued: 2014
- Authors: Duncan, Murray Ian
- Date: 2014
- Subjects: Sparidae , Fishes -- Indian Ocean , Fish populations , Fishery management , Fish stock assessment -- South Africa , Fish stock assessment -- Mozambique , Overfishing , Habitat conservation , Fishes -- Genetics , Fishes -- Climatic factors , Fishes -- Variation , Fishes -- Migration
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5360 , http://hdl.handle.net/10962/d1011868 , Sparidae , Fishes -- Indian Ocean , Fish populations , Fishery management , Fish stock assessment -- South Africa , Fish stock assessment -- Mozambique , Overfishing , Habitat conservation , Fishes -- Genetics , Fishes -- Climatic factors , Fishes -- Variation , Fishes -- Migration
- Description: Chrysoblephus puniceus is an over-exploited linefish species, endemic to the coastlines off southern Mozambique and eastern South Africa. Over-exploitation and habitat loss are two of the biggest threats to the sustainability of fisheries globally. Assessing the genetic stock structure (a prerequisite for effective management) and predicting climate related range changes will provide a better understanding of these threats to C. puniceus which can be used to improve the sustainability of the fishery. Two hundred and eighty four genetic samples were collected from eight sampling sites between Ponta da Barra in Mozambique and Coffee Bay in South Africa. The mitochondrial control region and ten microsatellite loci were amplified to analyse the stock structure of C. puniceus. The majority of microsatellite and mtDNA pairwise population comparisons were not significant (P > 0.05) although Xai Xai and Inhaca populations had some significant population comparisons for mtDNA (P < 0.05). AMOVA did not explain any significant variation at the between groups hierarchical level for any pre-defined groupings except for a mtDNA grouping which separated out Xai Xai and Inhaca from other sampling sites. SAMOVA, isolation by distance tests, structure analysis, principle component analysis and spatial autocorrelation analysis all indicated a single population of C. puniceus as being most likely. The migrate-n analysis provided evidence of current driven larval transport, with net migration rates influenced by current dynamics.Two hundred and thirty six unique presence points of C. puniceus were correlated with seasonal maximum and minimum temperature data and bathymetry to model the current distribution and predict future distribution changes of the species up until 2030. Eight individual species distribution models were developed and combined into a mean ensemble model using the Biomod2 package. Winter minimum temperature was the most important variable in determining models outputs. Overall the ensemble model was accurate with a true skills statistic score of 0.962. Binary transformed mean ensemble models predicted a northern and southern range contraction of C. puniceus' distribution of 15 percent; by 2030. The mean ensemble probability of occurrence models indicated that C. puniceus' abundance is likely to decrease off the southern Mozambique coastline but remain high off KwaZulu-Natal. The results of the genetic analysis support the theory of external recruitment sustaining the KwaZulu Natal fishery for C. puniceus. While the high genetic diversity and connectivity may make C. puniceus more resilient to disturbances, the loss of 15 percent; distribution and 11 percent; genetic diversity by 2030 will increase the species vulnerability. The decrease in abundance of C. puniceus off southern Mozambique together with current widespread exploitation levels could result in the collapse of the fishery. A single transboundary stock of C. puniceus highlights the need for co-management of the species. A combined stock assessment between South Africa and Mozambique and the development of further Marine Protected Areas off southern Mozambique are suggested as management options to minimise the vulnerability of this species.
- Full Text:
- Date Issued: 2014
- «
- ‹
- 1
- ›
- »