A holistic approach in understanding the effects of dietary protein sources on the growth and reproductive development of farmed abalone, Haliotis midae
- Wu, Yu
- Authors: Wu, Yu
- Date: 2020
- Subjects: Abalones -- Nutrition , Abalones -- Reproduction , Abalones -- Growth , Abalone culture , Haliotis midae -- Nutrition , Haliotis midae -- Reproduction , Haliotis midae -- Growth , Haliotis midae fisheries
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/167719 , vital:41506
- Description: The combination of fishmeal and soya in the formulated feed of farmed South African abalone, Haliotis midae, not only improved abalone growth, but also the sustainability of the compound diets by reducing the reliance on fishmeal. However, the presence of soya produced larger gonads compared to those of abalone fed kelp or single-source protein diets. There is an increasing drive to control sexual maturation and reduce undesirable spawning events in farmed abalone. However, the reasons for the reported effects of soya inclusion on the reproductive development of farmed H. midae remain unresolved. The aim of this research was to use a combination of techniques to contribute to the understanding of the relationship between growth, reproductive and nutritional physiology of farmed H. midae fed diets of varying protein sources. These techniques included stable isotope analysis (SIA), fatty acid analysis, gonad histological assessments and haemolymph sexsteroid hormone analysis. The objectives were to examine the allocation of protein and nutritional components to somatic and reproductive tissues. This study also included the first attempt to investigate the role that sex steroid hormones play during gametogenesis. Abalone (40 – 50 g abalone-1) were fed one of four diets: either a single-source protein-based diet, i.e., (1) fishmeal-only (FM) or (2) soya-only (S), or a combination diet of (3) fishmeal-soya (FM S) or (4) fishmeal-sunflower meal (FM SM). Sampling occurred in 45-day intervals over one year. Dietary protein source had an effect on the growth of abalone, with enhancements in growth linked to the combination of fishmeal and a plant-protein source. The fishmeal ingredient was the most utilised protein source throughout the temporal changes in protein allocation into somatic and reproductive tissue, followed by soya and then sunflower meal. The mean whole- body mass of abalone was significantly influenced by an interaction between time and dietary treatment, with average whole-body mass changing differently over time between treatments (RM-ANOVA, F(24, 96) = 2.13, p = 0.005). Overall, abalone that were fed FM S had higher mean whole-body mass values than abalone that were fed the single-protein based diets, while abalone that were fed FM SM were similar to animals from all dietary treatments (RMANOVA, F(3, 12) = 5.75, p = 0.01). Male abalone had significantly higher gonad bulk index (GBI) values compared to females (RM-ANOVA, F(1, 24) = 49.03, p < 0.001) and this was independent of dietary treatment. Within each sex, female abalone fed the FM S diet (15.92 ± 1.88 mm3 g-1) had significantly higher GBI values than abalone fed S (9.76 ± 1.08 mm3 g-1), while abalone fed FM (11.96 ± 1.71 mm3 g-1) and FM SM (11.90 ± 0.80 mm3 g-1) were similar to abalone from all other dietary treatments (Tukey’s HSD, p < 0.05). Male abalone fed the FM S (21.59 ± 2.10 mm3 g-1) and FM SM diet (19.30 ± 2.63 mm3 g-1) had similar GBI values and they were significantly higher than in abalone fed the S diet (14.74 ± 1.27 mm3 g-1), while abalone fed FM S had significantly higher GBI values than abalone that consumed the FM diet (15.08 ±1.63mm3 g-1) ( Tukey’s HSD, p < 0.05). Although sunflower meal was poorly utilised, it produced similar overall growth to abalone that were fed the FM S diets. Yet, feed conversion ratio values were significantly lower for abalone fed FM S (1.30 ± 0.13) compared to those in the other three treatments, with ratios ranging from 1.65 – 1.72 over the one-year. The fatty acid compositions of the somatic and gonadal tissues were similar between treatments (PERMANOVA, p = 0.21), while fatty acid composition was influenced by sampling day, tissue type and abalone sex (PERMANOVA, p < 0.05). The essential fatty acids (EFAs) eicosadienoic acid and a-linolenic acid were present in abalone tissue, but they were not detected in the diets, suggesting the important role that an alternate food source (e.g. farmed abalone also had access to diatoms) may have played and the ability that H. midae may have in converting long-chain polyunsaturated fatty acids from C18 precursors. A change in the abundance of EFAs in the gonad tissue during highest and lowest GBI values suggested that arachidonic, eicosapentaenoic, g-linolenic and linoleic acid were important in females, while eicosapentaenoic, eicosadienoic and a-linolenic acid were important for male reproductive development. Dietary protein sources had an effect on the frequency distribution of maturity stages, where females that were fed FM S produced more ripe gonads and more males that were fed FM SM contained testes that showed signs of ripeness over the one-year study. Although dietary protein influenced the sex steroid concentrations in females and males, exhibiting fluctuations throughout the one-year period, no distinct pattern linked to gametogenesis were observed. The results from this study illustrate: (1) the importance of conducting laboratory studies when implementing SIA and mixing models in aquaculture nutrition; (2) conducting nutritional studies on mature, grow-out abalone; and (3) assessing the importance of naturally occurring diatoms in their diet and their contribution to growth and reproduction. The novel contribution of this research towards abalone nutritional physiology, the implications of these findings to industry as well as potential considerations for future studies were addressed.
- Full Text:
- Date Issued: 2020
- Authors: Wu, Yu
- Date: 2020
- Subjects: Abalones -- Nutrition , Abalones -- Reproduction , Abalones -- Growth , Abalone culture , Haliotis midae -- Nutrition , Haliotis midae -- Reproduction , Haliotis midae -- Growth , Haliotis midae fisheries
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/167719 , vital:41506
- Description: The combination of fishmeal and soya in the formulated feed of farmed South African abalone, Haliotis midae, not only improved abalone growth, but also the sustainability of the compound diets by reducing the reliance on fishmeal. However, the presence of soya produced larger gonads compared to those of abalone fed kelp or single-source protein diets. There is an increasing drive to control sexual maturation and reduce undesirable spawning events in farmed abalone. However, the reasons for the reported effects of soya inclusion on the reproductive development of farmed H. midae remain unresolved. The aim of this research was to use a combination of techniques to contribute to the understanding of the relationship between growth, reproductive and nutritional physiology of farmed H. midae fed diets of varying protein sources. These techniques included stable isotope analysis (SIA), fatty acid analysis, gonad histological assessments and haemolymph sexsteroid hormone analysis. The objectives were to examine the allocation of protein and nutritional components to somatic and reproductive tissues. This study also included the first attempt to investigate the role that sex steroid hormones play during gametogenesis. Abalone (40 – 50 g abalone-1) were fed one of four diets: either a single-source protein-based diet, i.e., (1) fishmeal-only (FM) or (2) soya-only (S), or a combination diet of (3) fishmeal-soya (FM S) or (4) fishmeal-sunflower meal (FM SM). Sampling occurred in 45-day intervals over one year. Dietary protein source had an effect on the growth of abalone, with enhancements in growth linked to the combination of fishmeal and a plant-protein source. The fishmeal ingredient was the most utilised protein source throughout the temporal changes in protein allocation into somatic and reproductive tissue, followed by soya and then sunflower meal. The mean whole- body mass of abalone was significantly influenced by an interaction between time and dietary treatment, with average whole-body mass changing differently over time between treatments (RM-ANOVA, F(24, 96) = 2.13, p = 0.005). Overall, abalone that were fed FM S had higher mean whole-body mass values than abalone that were fed the single-protein based diets, while abalone that were fed FM SM were similar to animals from all dietary treatments (RMANOVA, F(3, 12) = 5.75, p = 0.01). Male abalone had significantly higher gonad bulk index (GBI) values compared to females (RM-ANOVA, F(1, 24) = 49.03, p < 0.001) and this was independent of dietary treatment. Within each sex, female abalone fed the FM S diet (15.92 ± 1.88 mm3 g-1) had significantly higher GBI values than abalone fed S (9.76 ± 1.08 mm3 g-1), while abalone fed FM (11.96 ± 1.71 mm3 g-1) and FM SM (11.90 ± 0.80 mm3 g-1) were similar to abalone from all other dietary treatments (Tukey’s HSD, p < 0.05). Male abalone fed the FM S (21.59 ± 2.10 mm3 g-1) and FM SM diet (19.30 ± 2.63 mm3 g-1) had similar GBI values and they were significantly higher than in abalone fed the S diet (14.74 ± 1.27 mm3 g-1), while abalone fed FM S had significantly higher GBI values than abalone that consumed the FM diet (15.08 ±1.63mm3 g-1) ( Tukey’s HSD, p < 0.05). Although sunflower meal was poorly utilised, it produced similar overall growth to abalone that were fed the FM S diets. Yet, feed conversion ratio values were significantly lower for abalone fed FM S (1.30 ± 0.13) compared to those in the other three treatments, with ratios ranging from 1.65 – 1.72 over the one-year. The fatty acid compositions of the somatic and gonadal tissues were similar between treatments (PERMANOVA, p = 0.21), while fatty acid composition was influenced by sampling day, tissue type and abalone sex (PERMANOVA, p < 0.05). The essential fatty acids (EFAs) eicosadienoic acid and a-linolenic acid were present in abalone tissue, but they were not detected in the diets, suggesting the important role that an alternate food source (e.g. farmed abalone also had access to diatoms) may have played and the ability that H. midae may have in converting long-chain polyunsaturated fatty acids from C18 precursors. A change in the abundance of EFAs in the gonad tissue during highest and lowest GBI values suggested that arachidonic, eicosapentaenoic, g-linolenic and linoleic acid were important in females, while eicosapentaenoic, eicosadienoic and a-linolenic acid were important for male reproductive development. Dietary protein sources had an effect on the frequency distribution of maturity stages, where females that were fed FM S produced more ripe gonads and more males that were fed FM SM contained testes that showed signs of ripeness over the one-year study. Although dietary protein influenced the sex steroid concentrations in females and males, exhibiting fluctuations throughout the one-year period, no distinct pattern linked to gametogenesis were observed. The results from this study illustrate: (1) the importance of conducting laboratory studies when implementing SIA and mixing models in aquaculture nutrition; (2) conducting nutritional studies on mature, grow-out abalone; and (3) assessing the importance of naturally occurring diatoms in their diet and their contribution to growth and reproduction. The novel contribution of this research towards abalone nutritional physiology, the implications of these findings to industry as well as potential considerations for future studies were addressed.
- Full Text:
- Date Issued: 2020
Aspects of the nutritional physiology of the perlemoen Haliotis midae (L.) and red abalone H. rufescens (Swainson)
- Authors: Kemp, Justin Oliver Gordon
- Date: 2018
- Subjects: Haliotis midae , Haliotis midae fisheries , Red abalone , Haliotis midae -- Feeding and feeds , Red abalone -- Feeding and feeds , Haliotis midae -- Nutrition -- Requirements , Red abalone -- Nutrition -- Requirements , Haliotis midae -- Metabolism , Red abalone -- Metabolism , Haliotis midae -- Physiology , Red abalone -- Physiology , Stable isotopes , Algae as feed
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/62314 , vital:28154
- Description: The source of abalone for human consumption has shown a dramatic shift away from wild-capture fisheries in the last 30 years, with over 90% of global production now coming from aquaculture. Farmers initially relied on the natural food of abalone (macroalgae) as a culture feed, though in regions where macroalgae availability was limiting, the need to develop formulated feeds was evident. Extensive research effort has led to the development of a number of formulated feed products currently employed in the industry. These feeds, however, differ markedly from the mixed macroalgal diets that abalone have evolved to utilise, particularly in terms of protein content and carbohydrate structure. The degree to which the nutritional physiology of abalone responds to these novel formulated diets, with and without macroalgal supplementation, was investigated in the current study. A multifaceted approach, combining growth trials, stable isotope nutrient tracers and metabolic experiments, was employed to gain insight into the post-absorption dynamics and utilisation of dietary nutrients under varying dietary regimes of fresh macroalgae and formulated feed. Growth trials conducted with both Haliotis rufescens and H. midae showed significantly higher growth and protein utilisation efficiency for abalone fed macroalgal diets compared to formulated feeds. Furthermore, when formulated feeds were supplemented with macroalgae to form combination diets, growth and the utilization of protein was improved compared to the formulated-feed-only diet. The poor utilisation of protein by H. midae fed the formulated feed could be traced, using a method combining stable isotope bio-markers with a Bayesian mixing model (SIAR), to the low incorporation of the fishmeal component of protein in the diet. The marked postprandial drop in the O:N ratio on abalone fed formulated feeds indicate that the protein was being diverted into catabolic metabolic pathways. The metabolic cost of digestion, termed specific dynamic action (SDA), was negated as a factor in the improved growth of abalone fed macroalgal diets, with the SDA coefficient 2.1 times that observed for formulated feed. Furthermore, the postprandial haemolymph glucose concentration (HGC) in H. midae was elevated when fed formulated feed compared to macroalgae. The high levels of circulating glucose are likely a result of the structure the carbohydrate source in formulated feeds and stimulate the deposition of glycogen through the allosteric control of glycogen synthase. Formulated feeds produced higher cooked meat yields in canning simulation trials, suggesting that muscle glycogen content may indirectly play a role in increasing canning yields through the displacement of collagen. The results of these empirical studies are synthesised under key themes, discussed within the context of their potential commercial relevance and future research directions are highlighted.
- Full Text:
- Date Issued: 2018
- Authors: Kemp, Justin Oliver Gordon
- Date: 2018
- Subjects: Haliotis midae , Haliotis midae fisheries , Red abalone , Haliotis midae -- Feeding and feeds , Red abalone -- Feeding and feeds , Haliotis midae -- Nutrition -- Requirements , Red abalone -- Nutrition -- Requirements , Haliotis midae -- Metabolism , Red abalone -- Metabolism , Haliotis midae -- Physiology , Red abalone -- Physiology , Stable isotopes , Algae as feed
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/62314 , vital:28154
- Description: The source of abalone for human consumption has shown a dramatic shift away from wild-capture fisheries in the last 30 years, with over 90% of global production now coming from aquaculture. Farmers initially relied on the natural food of abalone (macroalgae) as a culture feed, though in regions where macroalgae availability was limiting, the need to develop formulated feeds was evident. Extensive research effort has led to the development of a number of formulated feed products currently employed in the industry. These feeds, however, differ markedly from the mixed macroalgal diets that abalone have evolved to utilise, particularly in terms of protein content and carbohydrate structure. The degree to which the nutritional physiology of abalone responds to these novel formulated diets, with and without macroalgal supplementation, was investigated in the current study. A multifaceted approach, combining growth trials, stable isotope nutrient tracers and metabolic experiments, was employed to gain insight into the post-absorption dynamics and utilisation of dietary nutrients under varying dietary regimes of fresh macroalgae and formulated feed. Growth trials conducted with both Haliotis rufescens and H. midae showed significantly higher growth and protein utilisation efficiency for abalone fed macroalgal diets compared to formulated feeds. Furthermore, when formulated feeds were supplemented with macroalgae to form combination diets, growth and the utilization of protein was improved compared to the formulated-feed-only diet. The poor utilisation of protein by H. midae fed the formulated feed could be traced, using a method combining stable isotope bio-markers with a Bayesian mixing model (SIAR), to the low incorporation of the fishmeal component of protein in the diet. The marked postprandial drop in the O:N ratio on abalone fed formulated feeds indicate that the protein was being diverted into catabolic metabolic pathways. The metabolic cost of digestion, termed specific dynamic action (SDA), was negated as a factor in the improved growth of abalone fed macroalgal diets, with the SDA coefficient 2.1 times that observed for formulated feed. Furthermore, the postprandial haemolymph glucose concentration (HGC) in H. midae was elevated when fed formulated feed compared to macroalgae. The high levels of circulating glucose are likely a result of the structure the carbohydrate source in formulated feeds and stimulate the deposition of glycogen through the allosteric control of glycogen synthase. Formulated feeds produced higher cooked meat yields in canning simulation trials, suggesting that muscle glycogen content may indirectly play a role in increasing canning yields through the displacement of collagen. The results of these empirical studies are synthesised under key themes, discussed within the context of their potential commercial relevance and future research directions are highlighted.
- Full Text:
- Date Issued: 2018
- «
- ‹
- 1
- ›
- »