Effect of diet and sex-sorting on growth and gonad development in farmed South African abalone, Haliotis midae
- Authors: Ayres, Devin William Philip
- Date: 2014
- Subjects: Haliotis midae -- South Africa , Haliotis midae fisheries -- South Africa , Abalone culture -- South Africa , Abalones -- Physiology -- South Africa , Abalones -- South Africa -- Growth , Abalones -- Feeding and feeds -- South Africa
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5357 , http://hdl.handle.net/10962/d1010856 , Haliotis midae -- South Africa , Haliotis midae fisheries -- South Africa , Abalone culture -- South Africa , Abalones -- Physiology -- South Africa , Abalones -- South Africa -- Growth , Abalones -- Feeding and feeds -- South Africa
- Description: Abalone, Haliotis midae, farmers in South Africa that feed formulated diets reported a periodic drop in abalone growth during periods of increased gonad development. A large drop in abalone biomass was noticed after presumed spawning events. This study was aimed to determine the effect of diet and sex-sorting on gonad development in abalone. Experiments were conducted on a commercial abalone farm from July 2012 to the end of June 2013. Isonitrogenous and isoenergetic diets were formulated with two protein sources. A fishmeal and soybean meal (S-diet) diet and a fishmeal only (F-diet) diet were fed to abalone (50 - 70 g abalone⁻¹) over 12 months. Weight and length gain, gonad bulk index (GBI), visceral index (%) and meat mass index (%) were determined monthly and seasonally. A histological study on the female gonads was conducted. This study also included an experiment to test the effect of sex-sorting (70 - 80 g abalone⁻¹) on growth and body composition with treatments including males (M), females (F) and equal numbers of males and females (MF). Weight gain and length gain were faster in S-diet-fed abalone (RM-ANOVA, F ₍₁, ₁₆₎ = 7.77, p = 0.01; F ₍₁, ₆₉₎ = 49.9, p < 0.001, respectively). Gonad development was significantly affected by the inclusion of soybean meal with S-diet-fed abalone showing higher GBI-values than F-diet-fed abalone (RM-ANOVA, F ₍₁, ₃₃)= 16.22, p = 0.0003). Male abalone had higher GBI-values than females (RM-ANOVA, F ₍₁, ₃₃₎ = 39.87, p < 0.0001). There was no significant difference in average feed conversion ratio (FCR) between diets over time (RM-ANOVA, F ₍₁, ₂₁₎ = 0.008, p = 0.97). However, average FCR-values were significantly highest between November 2012 and March 2013, the presumed spawning season. The visceral mass (gut and gonad) as a proportion of whole mass (visceral index, %) was significantly higher in abalone fed the S-diet (RM-ANOVA; F ₍₁, ₆₉₎ = 68.06, p < 0.0001). There was no difference in meat mass index (%) between diets for both male and female abalone (RM-ANOVA; F ₍₇, ₂₄₈₎ = 0.80, p = 0.60; F ₍₇, ₂₄₁₎ = 1.7, p = 0.11,respectively). Meat mass index significantly decreased from September 2012 to February 2013 coinciding with the period of high GBI-values. The distribution of oocyte maturity stages differed between diets. The majority of oocytes within S-diet-fed abalone were fully mature stage 8 oocytes compared to a majority of stage 7 oocytes in F-diet-fed abalone. Histology corroborated peaks in GBI-values for abalone fed both diets. There was no significant difference in growth, GBI, visceral index (%) and meat mass index (%) between abalone sorted into monosex and mixed-sex populations. Thus, the presence of the opposite sex did not have an effect on growth and gonad mass in H. midae. The phytoestrogens daidzin, glycitin, genistin, daidzein, glycitein and genistein were present in soybean meal and only traceable amounts were found in the F-diet. This study provided evidence that soybean meal present in formulated feed affected growth and gonad development in H.midae. The difference in the distribution of the maturity stages of oocytes was affected by diet. Sex-sorting abalone into monosex and mixed-sex populations had no influence on weight and length gain and gonad development.
- Full Text:
- Date Issued: 2014
- Authors: Ayres, Devin William Philip
- Date: 2014
- Subjects: Haliotis midae -- South Africa , Haliotis midae fisheries -- South Africa , Abalone culture -- South Africa , Abalones -- Physiology -- South Africa , Abalones -- South Africa -- Growth , Abalones -- Feeding and feeds -- South Africa
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5357 , http://hdl.handle.net/10962/d1010856 , Haliotis midae -- South Africa , Haliotis midae fisheries -- South Africa , Abalone culture -- South Africa , Abalones -- Physiology -- South Africa , Abalones -- South Africa -- Growth , Abalones -- Feeding and feeds -- South Africa
- Description: Abalone, Haliotis midae, farmers in South Africa that feed formulated diets reported a periodic drop in abalone growth during periods of increased gonad development. A large drop in abalone biomass was noticed after presumed spawning events. This study was aimed to determine the effect of diet and sex-sorting on gonad development in abalone. Experiments were conducted on a commercial abalone farm from July 2012 to the end of June 2013. Isonitrogenous and isoenergetic diets were formulated with two protein sources. A fishmeal and soybean meal (S-diet) diet and a fishmeal only (F-diet) diet were fed to abalone (50 - 70 g abalone⁻¹) over 12 months. Weight and length gain, gonad bulk index (GBI), visceral index (%) and meat mass index (%) were determined monthly and seasonally. A histological study on the female gonads was conducted. This study also included an experiment to test the effect of sex-sorting (70 - 80 g abalone⁻¹) on growth and body composition with treatments including males (M), females (F) and equal numbers of males and females (MF). Weight gain and length gain were faster in S-diet-fed abalone (RM-ANOVA, F ₍₁, ₁₆₎ = 7.77, p = 0.01; F ₍₁, ₆₉₎ = 49.9, p < 0.001, respectively). Gonad development was significantly affected by the inclusion of soybean meal with S-diet-fed abalone showing higher GBI-values than F-diet-fed abalone (RM-ANOVA, F ₍₁, ₃₃)= 16.22, p = 0.0003). Male abalone had higher GBI-values than females (RM-ANOVA, F ₍₁, ₃₃₎ = 39.87, p < 0.0001). There was no significant difference in average feed conversion ratio (FCR) between diets over time (RM-ANOVA, F ₍₁, ₂₁₎ = 0.008, p = 0.97). However, average FCR-values were significantly highest between November 2012 and March 2013, the presumed spawning season. The visceral mass (gut and gonad) as a proportion of whole mass (visceral index, %) was significantly higher in abalone fed the S-diet (RM-ANOVA; F ₍₁, ₆₉₎ = 68.06, p < 0.0001). There was no difference in meat mass index (%) between diets for both male and female abalone (RM-ANOVA; F ₍₇, ₂₄₈₎ = 0.80, p = 0.60; F ₍₇, ₂₄₁₎ = 1.7, p = 0.11,respectively). Meat mass index significantly decreased from September 2012 to February 2013 coinciding with the period of high GBI-values. The distribution of oocyte maturity stages differed between diets. The majority of oocytes within S-diet-fed abalone were fully mature stage 8 oocytes compared to a majority of stage 7 oocytes in F-diet-fed abalone. Histology corroborated peaks in GBI-values for abalone fed both diets. There was no significant difference in growth, GBI, visceral index (%) and meat mass index (%) between abalone sorted into monosex and mixed-sex populations. Thus, the presence of the opposite sex did not have an effect on growth and gonad mass in H. midae. The phytoestrogens daidzin, glycitin, genistin, daidzein, glycitein and genistein were present in soybean meal and only traceable amounts were found in the F-diet. This study provided evidence that soybean meal present in formulated feed affected growth and gonad development in H.midae. The difference in the distribution of the maturity stages of oocytes was affected by diet. Sex-sorting abalone into monosex and mixed-sex populations had no influence on weight and length gain and gonad development.
- Full Text:
- Date Issued: 2014
Towards understanding the effects of stocking density on farmed South African abalone, Haliotis Midae
- Authors: Nicholson, Gareth Hurst
- Date: 2014
- Subjects: Haliotis midae -- South Africa , Haliotis midae fisheries -- South Africa , Abalones -- South Africa , Fish stocking -- South Africa , Abalone populations -- South Africa
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5371 , http://hdl.handle.net/10962/d1015646
- Description: The profitability of abalone farms is heavily influenced by their production per unit of grow-out space. With farms having physically expanded to the maximum, and with increasing production costs, one of the most realistic ways for farms to increase their production is through optimizing stocking densities. The effect of stocking density on Haliotis midae performance is undocumented and optimal stocking densities for this species have not been determined. Experiments were conducted under farm conditions to investigate the effects of four different stocking densities (16 %, 20 %, 22 % and 24 % of available surface area) on growth, production and health of three different size classes of abalone (15-35 g, 45-65 g, and 70-90 g start weight). Each treatment was replicated four times and trials ran over a period of eight months with measurements being made at four month intervals. Abalone behaviour was observed during the trials in the experimental tanks. Weight gain per abalone decreased with an increase in density for all tested size classes (5.04 ± 0.18 to 2.38 ± 0.17; 5.35 ± 0.21 to 4.62 ± 0.29; 7.97 ± 0.37 to 6.53 ± 0.28 g.abalone-1.month-1 for the 15-35, 45-65 and 70-90 g classes respectively, with an increased density of 16 to 24 %). Individual weight gain of 15-35 g abalone was similar at stocking densities of 16 % and 20 % while weight gain of 45-65 g and 70-90 g abalone decreased when density was increased above 16 %. Biomass gain (kg.basket-1.month-1) was not affected by stocking density in the 15-35 g and 45-65 g size classes (1.29 ± 0.02 and 0.97 ± 0.02 kg.basket-1.month-1 respectively). However, the biomass gained by baskets stocked with 70-90 g abalone increased with stocking density (1.08 ± 0.02 to 1.33 ± 0.02 kg.basket-1.month-1) with an increased density of 16 to 24 %) and did not appear to plateau within the tested density range (16 to 24 %). Food conversion ratio did not differ significantly between densities across all size classes. Stocking density did not have a significant effect on abalone condition factor or health indices. The proportion of abalone above the level of the feeder plate increased with density (7.26 ± 1.33 to 16.44 ± 1.33 with an increased density of 16 to 24 %). As a proportion of abalone situated in the area of the basket, the same proportions were situated on the walls above the feeder plate and on the feeder plate itself irrespective of stocking density (p > 0.05). Higher proportions of animals had restricted access to feed at higher stocking densities (p = 0.03). The amount of formulated feed available on the feeder plate did not differ between stocking densities throughout the night (p = 0.19). Individual abalone spent more time above the feeder plate at higher stocking densities (p < 0.05). The percentage of time above the feeder plate, spent on the walls of the basket and on the feeding surface was not significantly different at densities of 20 %, 22 % and 24 % (p > 0.05) but abalone stocked at 16 % spent a greater percentage of time above the feeder plate on the feeding surface (83.99 ± 6.26 %) than on the basket walls (16.01 ± 6.26 %). Stocking density did not affect the positioning of abalone within a basket during the day or at night. Different size H. midae are affected differently by increases in stocking density in terms of growth performance. Findings from this research may be implemented into farm management strategies to best suit production goals, whether in terms of biomass production or individual weight gain. The fundamental mechanisms resulting in reduced growth at higher densities are not well understood, however results from behaviour observations suggest that competition for preferred attachment space and feed availability are contributing to decreased growth rates. With knowledge of abalone behaviour at different densities, innovative tank designs may be established in order to counter the reduction in growth at higher densities.
- Full Text:
- Date Issued: 2014
- Authors: Nicholson, Gareth Hurst
- Date: 2014
- Subjects: Haliotis midae -- South Africa , Haliotis midae fisheries -- South Africa , Abalones -- South Africa , Fish stocking -- South Africa , Abalone populations -- South Africa
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5371 , http://hdl.handle.net/10962/d1015646
- Description: The profitability of abalone farms is heavily influenced by their production per unit of grow-out space. With farms having physically expanded to the maximum, and with increasing production costs, one of the most realistic ways for farms to increase their production is through optimizing stocking densities. The effect of stocking density on Haliotis midae performance is undocumented and optimal stocking densities for this species have not been determined. Experiments were conducted under farm conditions to investigate the effects of four different stocking densities (16 %, 20 %, 22 % and 24 % of available surface area) on growth, production and health of three different size classes of abalone (15-35 g, 45-65 g, and 70-90 g start weight). Each treatment was replicated four times and trials ran over a period of eight months with measurements being made at four month intervals. Abalone behaviour was observed during the trials in the experimental tanks. Weight gain per abalone decreased with an increase in density for all tested size classes (5.04 ± 0.18 to 2.38 ± 0.17; 5.35 ± 0.21 to 4.62 ± 0.29; 7.97 ± 0.37 to 6.53 ± 0.28 g.abalone-1.month-1 for the 15-35, 45-65 and 70-90 g classes respectively, with an increased density of 16 to 24 %). Individual weight gain of 15-35 g abalone was similar at stocking densities of 16 % and 20 % while weight gain of 45-65 g and 70-90 g abalone decreased when density was increased above 16 %. Biomass gain (kg.basket-1.month-1) was not affected by stocking density in the 15-35 g and 45-65 g size classes (1.29 ± 0.02 and 0.97 ± 0.02 kg.basket-1.month-1 respectively). However, the biomass gained by baskets stocked with 70-90 g abalone increased with stocking density (1.08 ± 0.02 to 1.33 ± 0.02 kg.basket-1.month-1) with an increased density of 16 to 24 %) and did not appear to plateau within the tested density range (16 to 24 %). Food conversion ratio did not differ significantly between densities across all size classes. Stocking density did not have a significant effect on abalone condition factor or health indices. The proportion of abalone above the level of the feeder plate increased with density (7.26 ± 1.33 to 16.44 ± 1.33 with an increased density of 16 to 24 %). As a proportion of abalone situated in the area of the basket, the same proportions were situated on the walls above the feeder plate and on the feeder plate itself irrespective of stocking density (p > 0.05). Higher proportions of animals had restricted access to feed at higher stocking densities (p = 0.03). The amount of formulated feed available on the feeder plate did not differ between stocking densities throughout the night (p = 0.19). Individual abalone spent more time above the feeder plate at higher stocking densities (p < 0.05). The percentage of time above the feeder plate, spent on the walls of the basket and on the feeding surface was not significantly different at densities of 20 %, 22 % and 24 % (p > 0.05) but abalone stocked at 16 % spent a greater percentage of time above the feeder plate on the feeding surface (83.99 ± 6.26 %) than on the basket walls (16.01 ± 6.26 %). Stocking density did not affect the positioning of abalone within a basket during the day or at night. Different size H. midae are affected differently by increases in stocking density in terms of growth performance. Findings from this research may be implemented into farm management strategies to best suit production goals, whether in terms of biomass production or individual weight gain. The fundamental mechanisms resulting in reduced growth at higher densities are not well understood, however results from behaviour observations suggest that competition for preferred attachment space and feed availability are contributing to decreased growth rates. With knowledge of abalone behaviour at different densities, innovative tank designs may be established in order to counter the reduction in growth at higher densities.
- Full Text:
- Date Issued: 2014
Growth and gonad size in cultured South African abalone, Haliotis midae
- Authors: Riddin, Nicholas Alwyn
- Date: 2013
- Subjects: Haliotis midae -- South Africa , Haliotis midae fisheries -- South Africa , Abalone culture -- South Africa , Abalones -- Physiology -- South Africa , Abalones -- Growth -- South Africa , Abalones -- Feeding and feeds -- South Africa
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5180 , http://hdl.handle.net/10962/d1001651 , Haliotis midae -- South Africa , Haliotis midae fisheries -- South Africa , Abalone culture -- South Africa , Abalones -- Physiology -- South Africa , Abalones -- Growth -- South Africa , Abalones -- Feeding and feeds -- South Africa
- Description: According to farm records, cultured Haliotis midae (50-70 g.abalone⁻¹) were growing 10% slower in winter when compared to summer. This reduction in growth rate also coincided with enlarged gonads. Initial trials showed that there were differences in mean monthly growth rates ranging from 1.97 – 5.14 g abalone⁻¹ month⁻¹, and gonad bulk index (GBI) also varied between months (GBI range: 26.88 ± 12.87 to 51.03 ± 34.47). The investment of energy into gonad tissue growth did not compromise whole body growth as the abalone continued to gain weight throughout the reproductive periods, probably due to gonadal growth. Growth of this size class of abalone was not influenced by water temperature or day length, suggesting favourable on-farm culture conditions (regression analyses, p > 0.05). There is no need to implement a seasonal dietary regime. Cultured H. midae were fed artificial diets with different protein sources, including only soya, only fishmeal, a combination of soya and fishmeal, and these were compared to kelp-fed abalone. Kelp-fed abalone grew slower than those fed artificial feeds (p>0.05). Gonad growth was the greatest when soya meal was included in the diet (average GBI: 74.91 ± 23.31), while the average gonad size of abalone fed the fishmealbased diet had gonads which were 38% smaller, and kelp-fed abalone had gonads which were 75% smaller than those of the abalone fed on diets containing soya meal. The increased gonad mass in abalone fed on diets including soya meal could be attributed to phytoestrogenic activity, as a result of the presence of isoflavones found in the soya plant; this remains to be tested. The use of soya in brood stock diet development is advised. The influence of dietary protein to energy ratio (1.41 – 2.46 g MJ⁻¹) on growth and gonad size was tested. Protein and energy levels within the ranges tested (22 and 33% protein; 13.5 and 15.6 MJ kg⁻¹) did not interact to influence growth rates of cultured H. midae. GBI increased from 50.67 ± 4.16 to 83.93 ± 9.35 units as a function of dietary protein to energy ratio (y = 42.02 x⁰·⁸¹; r² = 0.19; regression analysis: F₁¸₃₈ = 8.9; p = 0.005). In addition, protein level influenced gonad size, with gonad growth being greater in abalone fed the high protein diet (factorial ANOVA: F₁¸₃₂ = 7.1, p = 0.012). Canning yields were reduced by 7% when the protein content was increased, while increasing the quantity of dietary energy improved canning yields by ~ 6% (one-way ANOVA: F₁¸₂₈ = 14.4, p= 0.001). The present study provided evidence that although growth rates are varying seasonally, reproductive investment is not hindering weight gain. Gonad growth can be influenced if desired by farms, depending on the level of soya inclusion, as well as the protein to energy ratio in the diet. Monthly variation in growth and gonad size, as well as the influence of diet on gonad growth were highlighted, and the implications for farm application and further research were discussed.
- Full Text:
- Date Issued: 2013
- Authors: Riddin, Nicholas Alwyn
- Date: 2013
- Subjects: Haliotis midae -- South Africa , Haliotis midae fisheries -- South Africa , Abalone culture -- South Africa , Abalones -- Physiology -- South Africa , Abalones -- Growth -- South Africa , Abalones -- Feeding and feeds -- South Africa
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5180 , http://hdl.handle.net/10962/d1001651 , Haliotis midae -- South Africa , Haliotis midae fisheries -- South Africa , Abalone culture -- South Africa , Abalones -- Physiology -- South Africa , Abalones -- Growth -- South Africa , Abalones -- Feeding and feeds -- South Africa
- Description: According to farm records, cultured Haliotis midae (50-70 g.abalone⁻¹) were growing 10% slower in winter when compared to summer. This reduction in growth rate also coincided with enlarged gonads. Initial trials showed that there were differences in mean monthly growth rates ranging from 1.97 – 5.14 g abalone⁻¹ month⁻¹, and gonad bulk index (GBI) also varied between months (GBI range: 26.88 ± 12.87 to 51.03 ± 34.47). The investment of energy into gonad tissue growth did not compromise whole body growth as the abalone continued to gain weight throughout the reproductive periods, probably due to gonadal growth. Growth of this size class of abalone was not influenced by water temperature or day length, suggesting favourable on-farm culture conditions (regression analyses, p > 0.05). There is no need to implement a seasonal dietary regime. Cultured H. midae were fed artificial diets with different protein sources, including only soya, only fishmeal, a combination of soya and fishmeal, and these were compared to kelp-fed abalone. Kelp-fed abalone grew slower than those fed artificial feeds (p>0.05). Gonad growth was the greatest when soya meal was included in the diet (average GBI: 74.91 ± 23.31), while the average gonad size of abalone fed the fishmealbased diet had gonads which were 38% smaller, and kelp-fed abalone had gonads which were 75% smaller than those of the abalone fed on diets containing soya meal. The increased gonad mass in abalone fed on diets including soya meal could be attributed to phytoestrogenic activity, as a result of the presence of isoflavones found in the soya plant; this remains to be tested. The use of soya in brood stock diet development is advised. The influence of dietary protein to energy ratio (1.41 – 2.46 g MJ⁻¹) on growth and gonad size was tested. Protein and energy levels within the ranges tested (22 and 33% protein; 13.5 and 15.6 MJ kg⁻¹) did not interact to influence growth rates of cultured H. midae. GBI increased from 50.67 ± 4.16 to 83.93 ± 9.35 units as a function of dietary protein to energy ratio (y = 42.02 x⁰·⁸¹; r² = 0.19; regression analysis: F₁¸₃₈ = 8.9; p = 0.005). In addition, protein level influenced gonad size, with gonad growth being greater in abalone fed the high protein diet (factorial ANOVA: F₁¸₃₂ = 7.1, p = 0.012). Canning yields were reduced by 7% when the protein content was increased, while increasing the quantity of dietary energy improved canning yields by ~ 6% (one-way ANOVA: F₁¸₂₈ = 14.4, p= 0.001). The present study provided evidence that although growth rates are varying seasonally, reproductive investment is not hindering weight gain. Gonad growth can be influenced if desired by farms, depending on the level of soya inclusion, as well as the protein to energy ratio in the diet. Monthly variation in growth and gonad size, as well as the influence of diet on gonad growth were highlighted, and the implications for farm application and further research were discussed.
- Full Text:
- Date Issued: 2013
- «
- ‹
- 1
- ›
- »