Analysis of the interaction of Hsp90 with the extracellular matrix protein fibronectin (FN)
- Authors: Hunter, Morgan Campbell
- Date: 2014
- Subjects: Heat shock proteins , Fibronectins , Extracellular matrix proteins , Breast -- Cancer
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4170 , http://hdl.handle.net/10962/d1020960
- Description: Mounting evidence suggests that Hsp90 is present and functionally active in the extracellular space. The biological function of extracellular Hsp90 (eHsp90) remains relatively uncharacterized compared to that of intracellular Hsp90. eHsp90 has been shown to interact with a finite number of extracellular proteins, however, despite the identification of eHsp90 interacting proteins, the function of eHsp90 in these complexes is unknown. Several reports suggest a role for eHsp90α in cell migration and invasion. Reported targets for eHsp90 stimulated cell migration include MMPs, LRP-1, tyrosine kinase receptors and possible others unidentified. Limited studies report a role for eHsp90β. Recently, Hsp90α and Hsp90β were isolated in a complex containing fibronectin (FN) on the surface of MDA-MB-231 breast cancer cells. Herein, we report direct binding of Hsp90α and Hsp90β to FN using a solid phase binding assay and surface plasmon resonance (SPR) spectroscopy. SPR spectroscopy showed that Hsp90β bound the 70 kDa amino-terminal fragment of FN (FN70), but that binding of FN to Hsp90β was not limited to FN70. Confocal microscopy showed regions of colocalization of Hsp90 with extracellular FN matrix fibrils in Hs578T breast cancer cell lines. Treatment of Hs578T breast cancer cells with novobiocin (an Hsp90 inhibitor) and an LRP-1 blocking antibody resulted in a loss of FN matrix and FN endocytosis (novobiocin treated). Addition of exogenous Hsp90β was able to recover such effect after both treatments. FN was shown to colocalize with intracellular LRP-1 in novobiocin treated Hs578T cells. Immunoprecipitation of an LRP-1 containing complex showed the presence of Hsp90 and 70 and 120+ kDa FN fragments. Treatment of Hs578T cells with novobiocin increased the level of FN120+ bound in LRP-1 immunoprecipitate. Exogenous Hsp90β decreased the level of low and high molecular weight FN fragments in a complex with LRP-1, despite the fact that higher levels of lower molecular weight FN fragments were detected in this cell lysate compared to the other treatments. We report FN as a novel interacting protein of eHsp90. Taken together, we provide evidence for a direct role of eHsp90β in FN matrix remodeling. We suggest that Hsp90 plays a direct role in FN matrix dynamics through interaction with FN and LRP-1. The identification of FN as a novel interacting protein of eHsp90 suggests a role for Hsp90 in FN matrix remodeling, which is important for a number of fundamental cellular processes including cell migration and metastasis.
- Full Text:
- Date Issued: 2014
- Authors: Hunter, Morgan Campbell
- Date: 2014
- Subjects: Heat shock proteins , Fibronectins , Extracellular matrix proteins , Breast -- Cancer
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4170 , http://hdl.handle.net/10962/d1020960
- Description: Mounting evidence suggests that Hsp90 is present and functionally active in the extracellular space. The biological function of extracellular Hsp90 (eHsp90) remains relatively uncharacterized compared to that of intracellular Hsp90. eHsp90 has been shown to interact with a finite number of extracellular proteins, however, despite the identification of eHsp90 interacting proteins, the function of eHsp90 in these complexes is unknown. Several reports suggest a role for eHsp90α in cell migration and invasion. Reported targets for eHsp90 stimulated cell migration include MMPs, LRP-1, tyrosine kinase receptors and possible others unidentified. Limited studies report a role for eHsp90β. Recently, Hsp90α and Hsp90β were isolated in a complex containing fibronectin (FN) on the surface of MDA-MB-231 breast cancer cells. Herein, we report direct binding of Hsp90α and Hsp90β to FN using a solid phase binding assay and surface plasmon resonance (SPR) spectroscopy. SPR spectroscopy showed that Hsp90β bound the 70 kDa amino-terminal fragment of FN (FN70), but that binding of FN to Hsp90β was not limited to FN70. Confocal microscopy showed regions of colocalization of Hsp90 with extracellular FN matrix fibrils in Hs578T breast cancer cell lines. Treatment of Hs578T breast cancer cells with novobiocin (an Hsp90 inhibitor) and an LRP-1 blocking antibody resulted in a loss of FN matrix and FN endocytosis (novobiocin treated). Addition of exogenous Hsp90β was able to recover such effect after both treatments. FN was shown to colocalize with intracellular LRP-1 in novobiocin treated Hs578T cells. Immunoprecipitation of an LRP-1 containing complex showed the presence of Hsp90 and 70 and 120+ kDa FN fragments. Treatment of Hs578T cells with novobiocin increased the level of FN120+ bound in LRP-1 immunoprecipitate. Exogenous Hsp90β decreased the level of low and high molecular weight FN fragments in a complex with LRP-1, despite the fact that higher levels of lower molecular weight FN fragments were detected in this cell lysate compared to the other treatments. We report FN as a novel interacting protein of eHsp90. Taken together, we provide evidence for a direct role of eHsp90β in FN matrix remodeling. We suggest that Hsp90 plays a direct role in FN matrix dynamics through interaction with FN and LRP-1. The identification of FN as a novel interacting protein of eHsp90 suggests a role for Hsp90 in FN matrix remodeling, which is important for a number of fundamental cellular processes including cell migration and metastasis.
- Full Text:
- Date Issued: 2014
The role of Hsp90/Hsp70 organising protein (Hop) in the Proliferation, Survival and Migration of Breast Cancer Cells.
- Authors: Willmer, Tarryn
- Date: 2012
- Subjects: Cancer -- Treatment , Heat shock proteins , Cancer cells , Breast -- Cancer
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4130 , http://hdl.handle.net/10962/d1015720
- Description: Hop (the Hsp90/Hsp70 organising protein) is a co-chaperone that acts as an adapter between the major molecular chaperones Hsp90 and Hsp70 during the cellular assembly of the Hsp90 complex. The Hsp90 complex regulates the stability and conformational maturation of a range of important cellular proteins, many of which are deregulated in cancer. In this study, we hypothesised that Hop knockdown inhibits proliferation and migration of cancer cells. We characterised the expression of Hop in cell models of different cancerous status, and provided evidence that Hop was upregulated in tumour cells compared to normal cell counterparts. Using an RNA interference approach, a 60-90% knockdown of Hop was achieved for up to 144 hours in the MDA-MB-231 and Hs578T breast cancer cell lines. Hop knockdown resulted in downregulation of the Hsp90 client proteins, Akt and Stat3, as well as a change in the expression of other Hsp90 co-chaperones, p23, Cdc37 and Aha1, while no change in the levels of Hsp90 or Hsp70 was observed. Silencing of Hop impaired cell proliferation in Hs578T cells but an increase in proliferation in MDA-MB-231, suggesting that the role of Hop in cancer cell proliferation was dependent on type of cancer cell. Hop knockdown in Hs578T and MDA-MB- 231 cells did not lead to any significant changes in the half maximal inhibitory concentrations (IC50) of selected small molecule inhibitors (paclitaxel, geldanamycin and novobiocin) in these cell lines after 72 hours. Hop knockdown cells were however, more sensitive than control cells to the Hsp90 inhibitors geldanamycin and novobiocin at earlier time points and in the presence of the drug transporter inhibitor, verapamil. Hop knockdown caused a decrease in cell migration as measured by the wound healing assay in both Hs578T and MDA-MB-231 cells. Hop was present in purified pseudopodia fractions of migrating cells, and immunofluorescence analysis showed that Hop colocalised with actin at the leading edges of pseudopodia, points of adhesion and at intercellular junctions of cells that have been stimulated to migrate with the chemokine stromal derived factor-1. Hop was able to bind to actin in vitro using actin cosedimentation assays, and silencing of Hop dramatically reduced the capacity of Hs578T cells to form pseudopodia. These results establish a correlation between Hop and actin dynamics, pseudopodia formation and migration in the context of Hop silencing, and collectively suggest that Hop plays a role in cancer cell migration. This study presents experimental evidence for a promising alternative to targeting Hsp90 and Hsp70 chaperones, a novel drug target in cancer therapy.
- Full Text:
- Date Issued: 2012
- Authors: Willmer, Tarryn
- Date: 2012
- Subjects: Cancer -- Treatment , Heat shock proteins , Cancer cells , Breast -- Cancer
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4130 , http://hdl.handle.net/10962/d1015720
- Description: Hop (the Hsp90/Hsp70 organising protein) is a co-chaperone that acts as an adapter between the major molecular chaperones Hsp90 and Hsp70 during the cellular assembly of the Hsp90 complex. The Hsp90 complex regulates the stability and conformational maturation of a range of important cellular proteins, many of which are deregulated in cancer. In this study, we hypothesised that Hop knockdown inhibits proliferation and migration of cancer cells. We characterised the expression of Hop in cell models of different cancerous status, and provided evidence that Hop was upregulated in tumour cells compared to normal cell counterparts. Using an RNA interference approach, a 60-90% knockdown of Hop was achieved for up to 144 hours in the MDA-MB-231 and Hs578T breast cancer cell lines. Hop knockdown resulted in downregulation of the Hsp90 client proteins, Akt and Stat3, as well as a change in the expression of other Hsp90 co-chaperones, p23, Cdc37 and Aha1, while no change in the levels of Hsp90 or Hsp70 was observed. Silencing of Hop impaired cell proliferation in Hs578T cells but an increase in proliferation in MDA-MB-231, suggesting that the role of Hop in cancer cell proliferation was dependent on type of cancer cell. Hop knockdown in Hs578T and MDA-MB- 231 cells did not lead to any significant changes in the half maximal inhibitory concentrations (IC50) of selected small molecule inhibitors (paclitaxel, geldanamycin and novobiocin) in these cell lines after 72 hours. Hop knockdown cells were however, more sensitive than control cells to the Hsp90 inhibitors geldanamycin and novobiocin at earlier time points and in the presence of the drug transporter inhibitor, verapamil. Hop knockdown caused a decrease in cell migration as measured by the wound healing assay in both Hs578T and MDA-MB-231 cells. Hop was present in purified pseudopodia fractions of migrating cells, and immunofluorescence analysis showed that Hop colocalised with actin at the leading edges of pseudopodia, points of adhesion and at intercellular junctions of cells that have been stimulated to migrate with the chemokine stromal derived factor-1. Hop was able to bind to actin in vitro using actin cosedimentation assays, and silencing of Hop dramatically reduced the capacity of Hs578T cells to form pseudopodia. These results establish a correlation between Hop and actin dynamics, pseudopodia formation and migration in the context of Hop silencing, and collectively suggest that Hop plays a role in cancer cell migration. This study presents experimental evidence for a promising alternative to targeting Hsp90 and Hsp70 chaperones, a novel drug target in cancer therapy.
- Full Text:
- Date Issued: 2012
- «
- ‹
- 1
- ›
- »