Phylogeography and reproductive isolation of the brown mussel, Perna perna, on the South African coastline
- Authors: Barker, Cassandra
- Date: 2021-10
- Subjects: Mexilhao mussel South Africa , Phylogeography South Africa , Mexilhao mussel Reproduction , Mexilhao mussel Genetics , Intertidal organisms South Africa , Mexilhao mussel Climatic factors South Africa , Cytochrome oxidase , Mitochondrial DNA , Haplotype network
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10962/190041 , vital:44958
- Description: Maintenance of a species’ abundance and adaptive potential is partially dependent on its genetic diversity. Distinct genetic lineages within a species can differ significantly in their resistance and resilience to environmental pressure. An assessment of such differences is key to grasp the adaptive potential of a species. Physical environmental conditions are significant determinants of the distribution of species and their genetic lineages. Under climate change scenarios, the assessment of the temporal stability of the spatial distribution of genetic structure has important consequences for conservation as it offers key insights into the adaptive potential and evolutionary capacity of a species. This thesis investigated the phylogeography and reproductive isolation of Perna perna, the brown mussel. This species is an ecologically and economically important intertidal mussel on South Africa’s coastline. It was determined in 2007 that there were two distinct genetic lineages of P. perna present on South Africa’s coastline, the Eastern and Western lineage. This thesis compared mitochondrial DNA between samples collected in 2007 and samples collected in 2019 to determine differences in genetic structure of P. perna over time. This thesis further investigated the reproductive timing of the two lineages to determine if this contributes to the maintenance of the genetic structure of this species. The results show that there is a shift in the distribution of the Eastern lineage since 2007, an increase in the range of the overlap region, and there was a change in genetic diversity in the form of private haplotypes between 2007 and 2019. The lineages have unsynchronised spawning and reproductive patterns are more closely linked to changes in temperature. While the lineages have shown slight distributional changes over time, the influence of environmental conditions and the predicted changes in sea surface temperatures could see a change in future populations’ fitness and dispersal. Thus, changes in sea surface temperature could affect reproductive timing and the future genetic stability of the species. , Thesis (MSc) -- Faculty of Science, Zoology and Entomology, 2021
- Full Text:
- Date Issued: 2021-10
Distribution, habitat associations and conservation of the Eastern Cape rocky Sandelia bainsii (Perciform: Anabantidae) in the Great Fish River system
- Authors: Sifundza, Delsy Sindy
- Date: 2020
- Subjects: Anabantidae -- South Africa -- Great Fish River , Perciformes -- South Africa -- Great Fish River , Labyrinth fishes -- South Africa -- Great Fish River , Fishes -- Effect of human beings on -- South Africa -- Great Fish River , Fish populations -- South Africa -- Great Fish River , Fish declines -- South Africa -- Great Fish River , Fish populations -- Monitoring -- South Africa -- Great Fish River , Anabantidae -- Evolution -- South Africa -- Great Fish River , Gene flow , Mitochondrial DNA , Microsatellites (Genetics) , Eastern Cape rocky Sandelia bainsii , Freshwater ecology -- South Africa -- Great Fish River
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/142692 , vital:38102
- Description: In South Africa, freshwater ecosystems are under pressure due to increasing anthropogenic factors degrading river systems. The Cape Fold, the lower Southern Temperate Highveld and the Amatolo – Winterberg Highlands freshwater ecoregions contain some of the heavily impacted river systems in the country. One such river system is the Great Fish River system, which has been affected by anthropogenic modification (hydrological modification, water pollution and invasion by non-native fish species). These modifications have raised conservation concerns on an imperilled anabantid fish, the Eastern Cape rocky Sandelia bainsii that is confined to the Kat and Koonap rivers, which are tributaries of the Great Fish River. Historically, the species was reportedly common and abundant, with a range spanning across seven river systems (Kowie, Great Fish, Keiskamma, Igoda, Gxulu, Buffalo and Nahoon rivers) in the Eastern Cape Province. However, surveys have indicated that the species has experienced decline in population size and distribution range, with localised extirpations being reported. This resulted in its listing on the IUCN Red List of threatened species as Endangered. The proposed shale gas exploration and potential infrastructure development in the Karoo basin, which encompasses the headwaters of the Kat River, represent a potential future threat to the remnant populations of this species. The aim of the present study was to review the past and present distribution range of S. bainsii, determine the habitat associations and assess the conservation of S. bainsii in the Great Fish River system. This information is essential for informing conservation and management decisions for this species in the Great Fish River system. This study undertook a comprehensive survey of the Kat and the Koonap rivers in 2017, and augmented this information with data from more recent surveys that were conducted from 2009 - 2014 to map the distributions freshwater fishes in the Great Fish River system. Data from these recent surveys (2009 – 2017) were compared with historical records (1961 – 2005) obtained from the South African Institute for Aquatic Biodiversity to evaluate changes in distribution patterns of S. bainsii. Historical records indicated that S. bainsii occurred at 11 localities in the Kat River and three localities in the Koonap River. Data from recent surveys indicated that the species has persisted at these historical localities, except one locality in the Koonap River where no individuals of S. bainsii were captured, despite the use of multiple sampling approaches and gears. Although the species still persists at two of the three historical localities in the Koonap River, the population sizes have considerably declined as the species was reportedly in high abundance at these localities in the 1980s. Factors threatening the continued existence of this species in the Koonap River likely include non-native species, extreme drought conditions and the associated excessive abstraction of water which has resulted in the drying of some of the refugia pools where the species was historically common and abundant. In contrast to the Koonap River, the 2017 survey indicated that in the Kat River, S. bainsii had a similar distribution range compared to historical records. The species occurred at 11 of the 41 localities that were sampled in the Kat River, and the sampled populations consisted of all size classes. Sandelia bainsii occurred with other native fish species in the system, including Labeo umbratus, Enteromius anoplus and Glossogobius callidus. A comparison of historical and recent data indicates that non-native fishes have likely not expanded their ranges in the Kat River. This is likely due to the presence of weirs and dams that have prevented upstream movement of non-native fish species L. aeneus, C. gariepinus and T. sparrmanii which are now abundant in the lower Kat and mainstem Great Fish River. Surveys from the present study indicated that although S. bainsii still persists within the Kat River, there are a number of factors that pose a considerable threat to the continued existence of this species in the Great Fish River system. Chapter 3 evaluated the habitat associations of S. bainsii based on 10 physical and chemical variables and distribution data collected from 30 localities in the Upper Kat River and seven of its tributaries. A non-metric multidimensional scaling model was used to assess the distribution patterns of S. bainsii in relation to environmental variables. Furthermore, a negative binomial generalised linear model (GLM) was used to assess the relationship between the abundance of S. bainsii and environmental variables. Results from the present study indicated that S. bainsii was a habitat generalist as the distribution of this species showed no specific association with any of the habitat variables that were considered in this study. The species occurred in a wide range of habitats, including rocky sections in the upper Kat River and its tributaries as well as the mainstem sections. The GLM however indicated that the abundance of S. bainsii was negatively associated with increasing conductivity. In addition, the Kat River contains multiple weirs of variable sizes. Future studies should therefore evaluate the effects of these weirs on population fragmentation, gene flow and long-term evolutionary potential of S. bainsii through the application of techniques such as mitochondrial DNA and microsatellites.
- Full Text:
- Date Issued: 2020
Regional connectivity, differentiation and biogeography of three species of the genus Lutjanus in the western Indian Ocean
- Authors: Morallana, Jonas Moqebelo
- Date: 2014
- Subjects: Lutjanus -- Indian Ocean , Biogeography -- Indian Ocean , Phylogeography -- Indian Ocean , Lutjanus -- Geographical distribution , Lutjanus -- Variation , Mitochondrial DNA , Animal genetics , Variation (Biology)
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5369 , http://hdl.handle.net/10962/d1013293
- Description: Snappers of the genus Lutjanus are small to large predatory fishes occurring in inshore circumtropical and subtropical waters throughout the world. These fishes support fisheries across their distribution range. Within the Western Indian Ocean (WIO), previous studies on Lutjanus kasmira revealed limited spatial genetic differentiation, whereas Lutjanus fulviflamma showed high genetic connectivity. The phylogenetic relationships among WIO snappers are unknown. Previous studies in the Indo-Pacific (IP) did not include any WIO representatives. This study examined (1) the phylogeographic patterns in Lutjanus bohar, L. fulviflamma and L. lutjanus to understand the origins and factors influencing the distribution of diversity in the region, (2) how the physical environment, biological, and ecological factors influence genetic diversity, (3) the placement of WIO snappers in context to those from the IP, as well as the placement of taxa not included previously, (4) extent of differentiation among conspecifics from the two regions, and (5) the relationship of the Caesionidae to the Lutjanidae. Samples were sourced from across the WIO and from peripheral localities, where possible. DNA sequence data were generated from two mitochondrial gene regions (cyt-b and NADH-2) and a nuclear gene region (S7 intron 1). Data were analysed under a phylogeographic framework to examine genetic structure, diversity and differentiation among identified regions for each of the three species. Other sequence data were generated from two mitochondrial gene regions (COII and 16S rDNA) to examine the phylogenetic placement of WIO snappers in context of the IP snappers and the relationship of the Caesionidae to the Lutjanidae. Lutjanus bohar and L. fulviflamma displayed high genetic diversity, but lower diversities were observed for L. lutjanus. Genetic differentiation was observed between Mozambique and Maldives in L. bohar. Lutjanus fulviflamma was differentiated in South Africa, Mozambique, Mauritius and Thailand, while differentiation was observed between Kenya and Tanzania in Lutjanus lutjanus. Overall, low genetic differentiation and high connectivity were observed for each of the three species. This differentiation may result from intrinsic features of the species and extrinsic features of the environment, whereas the connectivity is mainly influenced by the pelagic larval duration. These patterns of differentiation are in accordance with a proposed vicariant biogeographic hypothesis for the origins of regional faunas of the IP. Phylogenies were similar to those published, with additional taxa not altering the previous groupings found. Conspecifics from the two regions clustered together, with varying degrees of differentiation among the WIO and IP, depending on the species. Members of the Caesionidae were nested within Lutjanidae, suggesting that morphological characters separating the two families are taxonomically insignificant. This affirms previous notions that the Caesionidae should be a subfamily within the Lutjanidae. This is the first multi-gene study, examining differentiation in multiple species of snapper over a wide geographic area in the WIO, and the results of this study could have potential implications for fisheries management and conservation.
- Full Text:
- Date Issued: 2014