Molecular study of mycobacterium tuberculosis complex (MTBC) DNA from Port Elizabeth
- Authors: Londiwe, Bhembe Nolwazi
- Date: 2014
- Subjects: Mycobacterium tuberculosis
- Language: English
- Type: Thesis , Masters , MSc (Microbiology)
- Identifier: vital:11281 , http://hdl.handle.net/10353/d1016163 , Mycobacterium tuberculosis
- Description: Mycobacterium tuberculosis complex (MTBC) is a causative agent of tuberculosis (TB) in humans and animals. The burden of tuberculosis in South Africa is worsened by the concurrent epidemic of HIV. The dynamic of TB epidemics has been investigated and yet little data has been given about the Eastern Cape, particularly Port Elizabeth. The study aimed to investigate the prevalence of drug resistant MTBC and to determine the mutations causing resistance in Port Elizabeth. One hundred and ninety (190) DNA samples isolated from sputum specimen in humans suspected of having TB were amplified using the Seeplex® MTB Nested ACE detection assay. To differentiate Mycobacterium tuberculosis complex (MTBC) members for surveillance purposes a multiplex polymerase chain reaction (PCR) method was done based on genomic regions of differences such as RD1, RD1mic, RD2seal, RD4, RD9 and RD12. Target genes known to confer resistance to first and second-line drugs were amplified and the amplicons sequenced using Big Dye Terminator DNA sequencing kit v3.1 (Applied Biosystems, UK). The patient’s demographic profiles were obtained from the National Health Laboratory Service (NHLS). All hundred and ninety DNA samples tested positive for MTBC using the Seeplex® MTB Nested ACE assay. Results show a high prevalence of extensive drug resistant TB in Port Elizabeth, Eastern Cape Province. One hundred and eighty four (184) DNA isolates were used in the identification of different MTBC species. We ended up working with 184 DNA isolates because we ran out of DNA, and we could not go back to isolate DNA from the affected individuals due to the fact that some patients died, while some have been released to go to their homes. From the 184 DNA isolates 45 (24.5%) isolates were identified to be M. tuberculosis, 94 isolates (51.1%) to be M. bovis BCG and 3 isolates (1.6%) to be M. cannetti. Sequencing results show the position of mutation in each DNA isolate; however in the study we got resistance to MDR to be 100% and 42% pre-XDR while 58% was XDR. These results raise an alarm for the prevalence MDR in MTBC from Port Elizabeth. This is a serious health concern which calls for a need to strategise on the identification of extensive drug resistant TB patients from multi-drug resistant TB patients and ensure monitoring of their treatment.
- Full Text:
Molecular detection and drug susceptibility of Mycobacterium tuberculosis complex in raw milk from a major dairy farm in the Nkonkobe region, Eastern Cape Province, South Africa
- Authors: Silaigwana, Blessing https://orcid.org/0000-0002-3324-1607
- Date: 2012
- Subjects: Mycobacterium tuberculosis , Drug resistance in microorganisms , Tuberculosis -- Pathogenesis
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10353/24239 , vital:62543
- Description: Mycobacterium tuberculosis complex (MTBC) organisms are the causative agents of tuberculosis in humans as well as animals. The study aimed to use molecular techniques for detection and drug susceptibility testing of MTBC in raw milk from cattle at a dairy farm in the Nkonkobe region of South Africa. Two hundred samples (100mL each) were collected and processed using the modified Petroff’s method. DNA was isolated using the Zymo Research bacterial DNA kit and amplified using the Seeplex® MTB Nested ACE assay. Drug susceptibility testing was performed using the Genotype® MTBDRplus assay. MTBC DNA was detected in 11 (6percent) of the samples tested. Resistance to both rifampicin and isoniazid was detected in 90.9percent of the positive samples. The most frequent rpoB mutations detected were H526Y (90percent), H526D (80percent), S531L (60percent) and D516V (20percent). No mutation was detected in the katG gene. All isoniazid resistant samples harboured mutations in the inhA gene. The most frequent (100percent) mutation conferring low level isoniazid resistance was the T8A substitution. The inhA mutations C15T, A16G and T8C were equally represented with 60percent frequency. A high prevalence of multi-drug resistance was noted in the Nkonkobe region. Therefore, the results of this study have clinico-veterinary and epidemiological significance and calls for further studies and necessary actions to delineate the situation. , Thesis (MSc) -- Faculty of Science and Agriculture, 2012
- Full Text: