KalCal: a novel calibration framework for radio interferometry using the Kalman Filter and Smoother
- Authors: Welman, Brian Allister
- Date: 2024-10-11
- Subjects: Radio interferometers , Calibration , Kalman filtering , Bayesian inference , Signal processing , Radio astronomy , MeerKAT
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/467127 , vital:76818
- Description: Calibration in radio interferometry is essential for correcting measurement errors. Traditional methods employ maximum likelihood techniques and non-linear least squares solvers but face challenges due to the data volumes and increased noise sensitivity of contemporary instruments such as MeerKAT. A common approach for mitigating these issues is using “solution intervals”, which helps manage the data volume and reduces overfitting. However, inappropriate interval sizes can degrade calibration quality, and determining optimal sizes is challenging, often relying on brute-force methods. This study introduces Kalman Filtering and Smoothing in Calibration (KalCal), a new framework for calibration that combines the Kalman Filter, Kalman Smoother, and the energy function: the negative logarithm of the Bayesian evidence. KalCal offers Bayesian-optimal solutions as probability densities and models calibration effects with lower computational requirements than iterative approaches. Unlike traditional methods, which require all the data for a particular solution to be in memory simultaneously, KalCal’s recursive computations only need a single pass through the data with appropriate prior information. The energy function provides the means for KalCal to determine this prior information. Theoretical contributions include additions to complex optimisation literature and the “Kalman-Woodbury Identity” that reformulates the traditional Kalman Filter. A Python implementation of the KalCal framework was benchmarked against solution intervals as implemented in the QuartiCal package. Simulations show KalCal matching solution intervals in high Signal-to-Noise Ratio (SNR) scenarios and surpassing them in low SNR conditions. Moreover, the energy function produced minima that coincide with KalCal’s Mean Square Error (MSE) on the true gain signal. This result is significant as the MSE is unavailable in real applications. Further research is needed to assess the computational feasibility and intricacies of KalCal. , Thesis (MSc) -- Faculty of Science, Physics and Electronics, 2024
- Full Text:
- Date Issued: 2024-10-11
- Authors: Welman, Brian Allister
- Date: 2024-10-11
- Subjects: Radio interferometers , Calibration , Kalman filtering , Bayesian inference , Signal processing , Radio astronomy , MeerKAT
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/467127 , vital:76818
- Description: Calibration in radio interferometry is essential for correcting measurement errors. Traditional methods employ maximum likelihood techniques and non-linear least squares solvers but face challenges due to the data volumes and increased noise sensitivity of contemporary instruments such as MeerKAT. A common approach for mitigating these issues is using “solution intervals”, which helps manage the data volume and reduces overfitting. However, inappropriate interval sizes can degrade calibration quality, and determining optimal sizes is challenging, often relying on brute-force methods. This study introduces Kalman Filtering and Smoothing in Calibration (KalCal), a new framework for calibration that combines the Kalman Filter, Kalman Smoother, and the energy function: the negative logarithm of the Bayesian evidence. KalCal offers Bayesian-optimal solutions as probability densities and models calibration effects with lower computational requirements than iterative approaches. Unlike traditional methods, which require all the data for a particular solution to be in memory simultaneously, KalCal’s recursive computations only need a single pass through the data with appropriate prior information. The energy function provides the means for KalCal to determine this prior information. Theoretical contributions include additions to complex optimisation literature and the “Kalman-Woodbury Identity” that reformulates the traditional Kalman Filter. A Python implementation of the KalCal framework was benchmarked against solution intervals as implemented in the QuartiCal package. Simulations show KalCal matching solution intervals in high Signal-to-Noise Ratio (SNR) scenarios and surpassing them in low SNR conditions. Moreover, the energy function produced minima that coincide with KalCal’s Mean Square Error (MSE) on the true gain signal. This result is significant as the MSE is unavailable in real applications. Further research is needed to assess the computational feasibility and intricacies of KalCal. , Thesis (MSc) -- Faculty of Science, Physics and Electronics, 2024
- Full Text:
- Date Issued: 2024-10-11
Meerkat polarimetric observations of Pictor A
- Authors: Andati, Lexy Acherwa Livoyi
- Date: 2024-10-11
- Subjects: Polarimetry , MeerKAT , Radio astronomy , Radio galaxies , Cosmic magnetic fields , Pictor A
- Language: English
- Type: Academic theses , Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/466896 , vital:76796 , DOI https://doi.org/10.21504/10962/466896
- Description: Pictor A is one of the brightest and closest radio galaxies in the Southern Hemisphere, offering a unique opportunity for in-depth studies of the astrophysics of radio galaxies and their interactions with their environments. Many multi-wavelength studies of this source have been done. However, the most comprehensive radio frequency study of Pictor A’s morphological components was conducted by Perley et al. (1997) using the Very Large Array (VLA) located in the Northern Hemisphere. To date, that work remains the most detailed study of Pictor A. In this thesis, we conducted a spectropolarimetric study of Pictor A using new L-band data obtained in 2019 from the high-sensitivity MeerKAT telescope, which provides the deepest and most sensitive data of this source at a continuous and finely sampled frequency coverage in the L-band. Thus, due to Pictor A’s proximity, high luminosity, and the MeerKAT’s high sensitivity, the data delivers a unique dataset for our study of the magnetic field structure of Pictor A and allows for a detailed study of the source’s morphological structures. We presented the steps taken during our calibration and data reduction, leading to polarimetryready images. During the first phase of calibration, excision of data corrupted by instrumental effects and radio frequency interference (RFI) resulted in only 50% useable data. Pictor A’s exceptionally bright western hotspot introduced significant artefacts in our images, mitigated in the second calibration phase through direction-dependent calibration. The calibrated data resulted in a multi-frequency synthesis (MFS) Stokes I image of Pictor A at 7.5′′ in resolution with an offsource RMS noise of ∼22 𝜇Jy/beam. The off-source noise in the Stokes Q and U sub-band images ranged between 95 – 278 𝜇Jy/beam and 41 – 233 𝜇Jy/beam, respectively. Additionally, we briefly highlighted the effects of RFI in the L-band on polarimetry, particularly the considerable loss of 𝜆2 coverage of ∼50%. All the calibration recipes used for this work were made available in this thesis. Using Pictor A’s data as a testbed, we introduced a Python-based tool, Smops, developed during the calibration stages of our work. Smops was designed for an intermediate post-processing step. It interpolates input sub-band model FITS images (such as those produced by WSClean) into finely channelized sub-band model FITS images, thereby generating model images at a higher frequency resolution. Smops reduces the need to generate model images with numerous sub-bands, which is computationally intensive and time-consuming. A higher resolution in frequency of the models facilitates more efficient model subtraction during self-calibration. We then presented the total intensity features of Pictor A, which the calibrated data reveals. We confirmed the presence of Pictor A’s radio jet extending from its core to the western hotspot. Notably, this feature, faint and barely visible in previous radio images, is now distinctly observed. The counterjet remains undetectable. Furthermore, we demonstrated the coexistence of radio emission, which is expected to align with previously observed X-ray diffuse emission. This observation confirmed the inverse Compton origin of Pictor A’s lobe emission. Employing the RM-synthesis technique for the spectropolarimetric study of Pictor A, we identified a relatively consistent rotation measure (RM) across its lobes, with an average RM of 48.06 ± 10.19 rad m−2 for the entire source. However, the eastern lobe displayed a wider RM dispersion than the western lobe. Moreover, our study affirmed the depolarisation asymmetry previously observed between the western and eastern lobes of Pictor A, where the eastern lobe exhibited significantly more depolarisation than its western counterpart. Most lines-of-sight across Pictor A displayed single-peaked Faraday spectra, indicating a single Faraday rotating screen. However, we also noted that several lines-of-sight (∼23%) showed more than one Faraday peak. An investigation into the ii possible causes of the multiple observed peaks using QU-fitting suggested that there is a possibility of a Faraday thick structure or multiple Faraday components along these paths. Furthermore, we estimated a Galactic RM contribution towards Pictor A of 23.57 ± 10.87 rad m−2. We concluded that while our Galaxy may contribute to the mean RM for this source, it cannot explain smallscale fluctuations, which suggests that some fraction of the observed rotation measures could result from some inter-galactic medium, X-ray gas near the shock boundary region (the sheath), or other unknown intervening material. We introduced Scrappy, a Python-based tool tailored for processing lines-of-sight data. Scrappy yields RM-synthesis diagnostic data products such as the data associated with each line-of-sight, and their corresponding plots in 𝜙-space (e.g. cleaned and dirty Faraday spectra and RMTF), and 𝜆2-space (e.g. the fractional polarisation, and Stokes Q and U ). Scrappy further avails a Bash-based pipeline, showrunner.sh, that processes input sub-band Stokes images, automatically selects usable sub-bands, stacks images into Stokes cubes, generates lines-of-sight, processes their corresponding data, and produces diagnostic plots. Additionally, it creates per-pixel maps of fractional polarisation, RM, polarisation angle, peak FDF, and linear polarised intensity. The pipeline ensures reproducibility. To visualise the diagnostic plots from Scrappy, we developed PolarVis, a simple web-based tool that enables the visualisation of diagnostic plots associated with each available line-of-sight, thus facilitating the quick exploration of interesting lines-of-sight in regions across this source. This tool facilitates the visualisation of polarisation behaviour for specific lines-of-sight, enabling quick identification of interesting regions of the source. Furthermore, its interactivity promotes the exploration of line-of-sight data. Availing data to the public with this tool permits validation or comparison of results from varying techniques, hence fostering a sense of transparency. As a result, the 2389 lines-of-sight of Pictor A are presented using PolarVis and are available at https://pica.ratt.center. , Thesis (PhD) -- Faculty of Science, Physics and Electronics, 2024
- Full Text:
- Date Issued: 2024-10-11
- Authors: Andati, Lexy Acherwa Livoyi
- Date: 2024-10-11
- Subjects: Polarimetry , MeerKAT , Radio astronomy , Radio galaxies , Cosmic magnetic fields , Pictor A
- Language: English
- Type: Academic theses , Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/466896 , vital:76796 , DOI https://doi.org/10.21504/10962/466896
- Description: Pictor A is one of the brightest and closest radio galaxies in the Southern Hemisphere, offering a unique opportunity for in-depth studies of the astrophysics of radio galaxies and their interactions with their environments. Many multi-wavelength studies of this source have been done. However, the most comprehensive radio frequency study of Pictor A’s morphological components was conducted by Perley et al. (1997) using the Very Large Array (VLA) located in the Northern Hemisphere. To date, that work remains the most detailed study of Pictor A. In this thesis, we conducted a spectropolarimetric study of Pictor A using new L-band data obtained in 2019 from the high-sensitivity MeerKAT telescope, which provides the deepest and most sensitive data of this source at a continuous and finely sampled frequency coverage in the L-band. Thus, due to Pictor A’s proximity, high luminosity, and the MeerKAT’s high sensitivity, the data delivers a unique dataset for our study of the magnetic field structure of Pictor A and allows for a detailed study of the source’s morphological structures. We presented the steps taken during our calibration and data reduction, leading to polarimetryready images. During the first phase of calibration, excision of data corrupted by instrumental effects and radio frequency interference (RFI) resulted in only 50% useable data. Pictor A’s exceptionally bright western hotspot introduced significant artefacts in our images, mitigated in the second calibration phase through direction-dependent calibration. The calibrated data resulted in a multi-frequency synthesis (MFS) Stokes I image of Pictor A at 7.5′′ in resolution with an offsource RMS noise of ∼22 𝜇Jy/beam. The off-source noise in the Stokes Q and U sub-band images ranged between 95 – 278 𝜇Jy/beam and 41 – 233 𝜇Jy/beam, respectively. Additionally, we briefly highlighted the effects of RFI in the L-band on polarimetry, particularly the considerable loss of 𝜆2 coverage of ∼50%. All the calibration recipes used for this work were made available in this thesis. Using Pictor A’s data as a testbed, we introduced a Python-based tool, Smops, developed during the calibration stages of our work. Smops was designed for an intermediate post-processing step. It interpolates input sub-band model FITS images (such as those produced by WSClean) into finely channelized sub-band model FITS images, thereby generating model images at a higher frequency resolution. Smops reduces the need to generate model images with numerous sub-bands, which is computationally intensive and time-consuming. A higher resolution in frequency of the models facilitates more efficient model subtraction during self-calibration. We then presented the total intensity features of Pictor A, which the calibrated data reveals. We confirmed the presence of Pictor A’s radio jet extending from its core to the western hotspot. Notably, this feature, faint and barely visible in previous radio images, is now distinctly observed. The counterjet remains undetectable. Furthermore, we demonstrated the coexistence of radio emission, which is expected to align with previously observed X-ray diffuse emission. This observation confirmed the inverse Compton origin of Pictor A’s lobe emission. Employing the RM-synthesis technique for the spectropolarimetric study of Pictor A, we identified a relatively consistent rotation measure (RM) across its lobes, with an average RM of 48.06 ± 10.19 rad m−2 for the entire source. However, the eastern lobe displayed a wider RM dispersion than the western lobe. Moreover, our study affirmed the depolarisation asymmetry previously observed between the western and eastern lobes of Pictor A, where the eastern lobe exhibited significantly more depolarisation than its western counterpart. Most lines-of-sight across Pictor A displayed single-peaked Faraday spectra, indicating a single Faraday rotating screen. However, we also noted that several lines-of-sight (∼23%) showed more than one Faraday peak. An investigation into the ii possible causes of the multiple observed peaks using QU-fitting suggested that there is a possibility of a Faraday thick structure or multiple Faraday components along these paths. Furthermore, we estimated a Galactic RM contribution towards Pictor A of 23.57 ± 10.87 rad m−2. We concluded that while our Galaxy may contribute to the mean RM for this source, it cannot explain smallscale fluctuations, which suggests that some fraction of the observed rotation measures could result from some inter-galactic medium, X-ray gas near the shock boundary region (the sheath), or other unknown intervening material. We introduced Scrappy, a Python-based tool tailored for processing lines-of-sight data. Scrappy yields RM-synthesis diagnostic data products such as the data associated with each line-of-sight, and their corresponding plots in 𝜙-space (e.g. cleaned and dirty Faraday spectra and RMTF), and 𝜆2-space (e.g. the fractional polarisation, and Stokes Q and U ). Scrappy further avails a Bash-based pipeline, showrunner.sh, that processes input sub-band Stokes images, automatically selects usable sub-bands, stacks images into Stokes cubes, generates lines-of-sight, processes their corresponding data, and produces diagnostic plots. Additionally, it creates per-pixel maps of fractional polarisation, RM, polarisation angle, peak FDF, and linear polarised intensity. The pipeline ensures reproducibility. To visualise the diagnostic plots from Scrappy, we developed PolarVis, a simple web-based tool that enables the visualisation of diagnostic plots associated with each available line-of-sight, thus facilitating the quick exploration of interesting lines-of-sight in regions across this source. This tool facilitates the visualisation of polarisation behaviour for specific lines-of-sight, enabling quick identification of interesting regions of the source. Furthermore, its interactivity promotes the exploration of line-of-sight data. Availing data to the public with this tool permits validation or comparison of results from varying techniques, hence fostering a sense of transparency. As a result, the 2389 lines-of-sight of Pictor A are presented using PolarVis and are available at https://pica.ratt.center. , Thesis (PhD) -- Faculty of Science, Physics and Electronics, 2024
- Full Text:
- Date Issued: 2024-10-11
Mining MeerKAT data for minute to hour timescale transients and variable sources
- Authors: Gcilitshana, Sihle
- Date: 2024-10-11
- Subjects: MeerKAT , Astronomy Data processing , Radio astronomy , Pipelining (Electronics) , Active galactic nuclei
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/464886 , vital:76554
- Description: In radio astronomy, minute-to-hour timescale transients and variable sources present an understudied population. We now have an unprecedented view of the transient radio sky due to the advent of new telescopes (such as the MeerKAT) with high instantaneous sensitivity, excellent snapshot imaging capabilities, and a large field of view. We can now probe into this population. This thesis presents the search for minute-to-hour timescale transient and variable sources in two of MeerKAT archival observations: the COSMOS and MACS J2140.2−2339 fields. The fields were observed for eight and five hours at the UHF band, respectively. We employed the PARROT transient and variable search pipeline currently being developed by the RATT group at Rhodes University. The pipeline’s input is a cross-calibrated measurement set, and its outputs are light curves extracted from all the sources in the restored image of the field. Using the light curves from the pipeline, we detected two variable sources in the COSMOS field, scintillating Active Galactic Nuclei (AGNs), which are most likely caused by the turbulent plasma in the interstellar medium. Due to persistent ionospheric diffraction, no variable sources were detected in the MACS J2140.2−2339 field, and no transients were detected in either field. The thesis also highlights areas where improvements to the PARROT pipeline can be implemented. , Thesis (MSc) -- Faculty of Science, Physics and Electronics, 2024
- Full Text:
- Date Issued: 2024-10-11
- Authors: Gcilitshana, Sihle
- Date: 2024-10-11
- Subjects: MeerKAT , Astronomy Data processing , Radio astronomy , Pipelining (Electronics) , Active galactic nuclei
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/464886 , vital:76554
- Description: In radio astronomy, minute-to-hour timescale transients and variable sources present an understudied population. We now have an unprecedented view of the transient radio sky due to the advent of new telescopes (such as the MeerKAT) with high instantaneous sensitivity, excellent snapshot imaging capabilities, and a large field of view. We can now probe into this population. This thesis presents the search for minute-to-hour timescale transient and variable sources in two of MeerKAT archival observations: the COSMOS and MACS J2140.2−2339 fields. The fields were observed for eight and five hours at the UHF band, respectively. We employed the PARROT transient and variable search pipeline currently being developed by the RATT group at Rhodes University. The pipeline’s input is a cross-calibrated measurement set, and its outputs are light curves extracted from all the sources in the restored image of the field. Using the light curves from the pipeline, we detected two variable sources in the COSMOS field, scintillating Active Galactic Nuclei (AGNs), which are most likely caused by the turbulent plasma in the interstellar medium. Due to persistent ionospheric diffraction, no variable sources were detected in the MACS J2140.2−2339 field, and no transients were detected in either field. The thesis also highlights areas where improvements to the PARROT pipeline can be implemented. , Thesis (MSc) -- Faculty of Science, Physics and Electronics, 2024
- Full Text:
- Date Issued: 2024-10-11
Third generation calibrations for Meerkat Observation of Saraswati Supercluster
- Authors: Kincaid, Robert Daniel
- Date: 2022-10-14
- Subjects: Square Kilometre Array (Project) , Superclusters , Saraswati Supercluster , Radio astronomy , MeerKAT , Calibration
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/362916 , vital:65374
- Description: The international collaboration of the Square Kilometre Array (SKA), which is one of the largest and most challenging science projects of the 21st century, will bring a revolution in radio astronomy in terms of sensitivity and resolution. The recent launch of several new radio instruments, combined with the subsequent developments in calibration and imaging techniques, has dramatically advanced this field over the past few years, thus enhancing our knowledge of the radio universe. Various SKA pathfinders around the world have been developed (and more are planned for construction) that have laid down a firm foundation for the SKA in terms of science while additionally giving insight into the technological requirements required for the projected data outputs to become manageable. South Africa has recently built the new MeerKAT telescope, which is a SKA precursor forming an integral part of SKA-mid component. The MeerKAT instrument has unprecedented sensitivity that can cater for the required science goals of the current and future SKA era. It is noticeable from MeerKAT and other precursors that the data produced by these instruments are significantly challenging to calibrate and image. Calibration-related artefacts intrinsic to bright sources are of major concern since, they limit the Dynamic Range (DR) and image fidelity of the resulting images and cause flux suppression of extended sources. Diffuse radio sources from galaxy clusters in the form of halos, relics and most recently bridges on the Mpc scale, because of their diffuse nature combined with wide field of view (FoV) observations, make them particularly good candidates for testing the different approaches of calibration. , Thesis (MSc) -- Faculty of Science, Physics and Electronics, 2022
- Full Text:
- Date Issued: 2022-10-14
- Authors: Kincaid, Robert Daniel
- Date: 2022-10-14
- Subjects: Square Kilometre Array (Project) , Superclusters , Saraswati Supercluster , Radio astronomy , MeerKAT , Calibration
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/362916 , vital:65374
- Description: The international collaboration of the Square Kilometre Array (SKA), which is one of the largest and most challenging science projects of the 21st century, will bring a revolution in radio astronomy in terms of sensitivity and resolution. The recent launch of several new radio instruments, combined with the subsequent developments in calibration and imaging techniques, has dramatically advanced this field over the past few years, thus enhancing our knowledge of the radio universe. Various SKA pathfinders around the world have been developed (and more are planned for construction) that have laid down a firm foundation for the SKA in terms of science while additionally giving insight into the technological requirements required for the projected data outputs to become manageable. South Africa has recently built the new MeerKAT telescope, which is a SKA precursor forming an integral part of SKA-mid component. The MeerKAT instrument has unprecedented sensitivity that can cater for the required science goals of the current and future SKA era. It is noticeable from MeerKAT and other precursors that the data produced by these instruments are significantly challenging to calibrate and image. Calibration-related artefacts intrinsic to bright sources are of major concern since, they limit the Dynamic Range (DR) and image fidelity of the resulting images and cause flux suppression of extended sources. Diffuse radio sources from galaxy clusters in the form of halos, relics and most recently bridges on the Mpc scale, because of their diffuse nature combined with wide field of view (FoV) observations, make them particularly good candidates for testing the different approaches of calibration. , Thesis (MSc) -- Faculty of Science, Physics and Electronics, 2022
- Full Text:
- Date Issued: 2022-10-14
- «
- ‹
- 1
- ›
- »