Synthesis and characterisation of lanthanide complexes with potential nitrogen- and oxygen-donor schiff base ligands
- Authors: Pikoli, Sibongile
- Date: 2020
- Subjects: Rare earths , Schiff bases
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10948/47050 , vital:39778
- Description: This research describes the coordination chemistry of lanthanide complexes with potentially multidentate nitrogen- and oxygen-donor Schiff base derivatives. The studies were performed using various physico-chemical techniques including melting point, IR and NMR spectroscopy, UV-Vis spectroscopy, elemental analyses, conductivity measurements, X-ray crystallography and cyclic voltammetry. The reaction of [Ln(NO3)3·xH2O] (Ln = Nd, Gd, Yb; x = 6 for Nd and Gd, x = 5 for Yb) with the flexible salen-type Schiff base ligand 1,3-bis(o-hydroxybenzylideneamino)propane (H2L1) produced three polynuclear complexes with the general formulae {[Nd(µH2L1)4(NO3)3]·2H2O}n and [Ln(µ-H2L1)2(NO3)6(H2L1)] (Ln = Gd and Yb). Single-crystal Xray crystallography revealed a ten-coordinate polymeric Nd(III) complex that crystallised in the monoclinic space group P21/c, and isostructural nine-coordinate binuclear Gd(III) and Yb(III) complexes (triclinic system, space group P-1). The lanthanide contraction effect is clear across the series. The flexible nature of HL2 results in the self-assembly of the Nd(III) complex in a 1D polymer chain by acting as the bridge between the metal ions. The Nd-Ophenolate bond distances are 2.403(18), 2.463(17), 2.379(17) and 2.367(19) Å and the average Nd-Onitrate bond length is 2.671 Å. Furthermore, the electronic absorption spectra displays 4f→4f transitions solely for the neodymium(III) compound. The syntheses and characterisation of the lanthanide complexes, [La(HL2)3(NO3)3], [Dy(HL2)2(NO3)3] and [Dy(HL2)2Cl3(H2O)]·2CH2Cl2 with the o-vanillin-derived Schiff base ligand 2-methoxy-6-[(E)-(phenylimino)methyl]phenol (HL2) are reported. The nitro-stabilised La(III) and Dy(III) compounds are ten-coordinate with metabidiminished icosahedron and sphenocorona geometries, respectively. Substitution of the nitrate with chloride ions in the starting metal compounds yielded an eight-coordinate Dy(III) complex that adopts the biaugmented trigonal prism geometry. For all three complexes, HL2 exists as a zwitterion that is bound to the metal centre in a mono- and bidentate fashion via the phenolate and methoxy oxygen atoms. The dysprosium(III) chloride complex is stabilised by both intramolecular N−H···O and intermolecular O−H···C1 hydrogen bonds, while the crystal packing of the Ln(III) nitrate complexes is ensured by mainly intramolecular N−H···O hydrogen bonds. Fluorescence studies displayed characteristic Dy(III) f→f transitions (4F9/2 → 6H15/2), which suggest the ligand HL2 is an effective organic antenna to absorb and transfer energy to the dysprosium ion. A series of mononuclear Nd(III) complexes with the Schiff base derivatives 2-methoxy-6-[(E)(phenylimino)methyl]phenol (HL2), 5-methoxy-2-[(E)-(phenylimino)methyl]phenol (HL3) and 2-methoxy-6-{(E)-[(2-methoxyphenyl)imino]methyl}phenol (HL4) yielded structurally diverse complexes defined by the formulae [Nd(HL2)2(NO3)3], [Nd(HL3)3(NO3)3] and [Nd(HL4)2(NO3)3]·CH3OH. Crystallographic analysis shows HL2 and HL4 coordinate bidentately via the phenolate and methoxy oxygen atoms, while HL3 is bound monodentately through the phenolate oxygen atom. Continuous shape measures depict that the decacoordinate complexes with HL2 and HL4 conform to the sphenocorona and tetradecahedron geometries, respectively, whilst the nona-coordinate Nd(III) complex with HL3 exhibits the muffin geometry. The effect of the ligand substituents and their positions (meta versus para) on the absorption and emission intensities of the complexes is demonstrated. Additionally, the electrochemical behaviour of the o-vanillin-derived Schiff base ligands and their complexes was also investigated, and the results illustrate ligand-based reductions and metal-centred redox potentials that are significantly shifted by the ligand substituents.
- Full Text:
- Date Issued: 2020
Synthesis, characterisation and biological activity of 2-(methylthiomethyl)anilines, 2-(methylthio)anilines, their Schiff-base derivatives and metal(II) (Co, Ni, Cu) complexes
- Authors: Olalekan, Temitope Elizabeth
- Date: 2013
- Subjects: Aniline , Schiff bases , Ligands , Nuclear magnetic resonance spectroscopy , Chelates , X-ray crystallography , Antimalarials
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4562 , http://hdl.handle.net/10962/d1020868
- Description: A series of 31 sulfur-nitrogen donor ligands and 64 metal(II) complexes have been investigated. The thiomethylated aniline ligands 2–(methylthiomethyl)aniline 2MT and 2–(methylthio)aniline 2MA were synthesized with their substituted derivatives (-Me, -MeO, -Cl, -Br, -NO2) to serve as chelating agents. These ligands behave as bidentate ligands with SN donor group with Co(II), Ni(II) and Cu(II). The Co(II) and Ni(II) complexes have the ML2Cl2 molecular formula while the Cu(II) complexes formed with MLCl2 stoichiometry where L is the bidentate ligand. The ligands and their metal(II) complexes have been characterized by elemental analysis and with spectroscopic techniques. The trend observed in the NMR spectra and IR frequencies of the thiomethylated compounds shows there is a significant difference between the 2MT and 2MA series as a result of sulfur lone pairs extending the conjugation of the aromatic ring in the case of the latter. The effect of the position and electronic nature of ring substituent on the NMR shifts of the amine protons is discussed. The 6- and 5-membered chelate complexes formed by the 2MT and 2MA ligands respectively do not show significant diversity in their spectroscopic properties. From the elemental analysis for the Co(II) and Ni(II) complexes, their compositions reveal 1:2 M:L stoichiometry with 2 chlorine atoms from the respective metal salts. In addition, the spectroscopic data are largely indicative of tetragonally distorted structures for these solid complexes. The X-ray crystallography data reveal the Cu(II) complexes exist as square pyramidal dimers and with long Cu–Cl equitorial bonds fit into the tetragonally distorted octahedral structure. The electrolytic nature of Co(II) and Cu(II) complexes in DMF were found to be similar, they behave as non electrolytes in contrast to Ni(II) complexes which are 1:1 electrolytes. The electronic spectra of these metal(II) complexes were found to be different for both their solid forms and in solutions of DMF and DMSO and this has been discussed. The thiomethylated aniline ligands possess the amine and thioether groups which are present in many known biologically active compounds, hence the biological activity of the ligands and their metal complexes were tested against three strains of bacteria and one fungus. The methoxy-substituted derivatives were found to possess better inhibitory activity and this was similarly reflected in the metal(II) complexes. The activity of the complexes can be said to be in the order, Cu(II) > Co(II) > Ni(II). The Schiff-base derivatives were prepared from the ligands and para-methoxysalicylaldehyde and their Cu(II) complexes were synthesized in order to determine their biological activity. The Schiff-base ligands were found to be less active than their parent ligands. The Cu(II) complexes are not soluble in water, DMSO or DMF, as a result and could not be evaluated for their biological activity. Based on the good results from the antimicrobial evaluation, the antiplasmodial activity of some of the Co(II), Ni(II) and Cu(II) complexes of the thiomethylated ligands against Plasmodium falciparum (FCR-3) was determined. At 50 μM concentration level, the Cu(II) complexes show activity equal or better than the prophylactic chloroquine. The Cu(II) complexes with the methoxy-substituted demonstrated exceptional activity but their Co(II) and Ni(II) analogues did not show any activity. The cytotoxicity of the active Cu(II) complexes at 50 μM concentration was determined against the breast cancer cell line (MDA-MB-231). The compounds destroyed the cancer cell in the range of 28–40%, thus showing their preferred activity against the parasitic cell instead of the cancer cell. The selectivity demonstrated by these compounds have shown them to be potential antimalarial agents and this could be further investigated.
- Full Text:
- Date Issued: 2013
Synthesis, characterization and antimicrobial activity of copper (II) complexes of some hydroxybenzaldimines and their derivatives
- Authors: Sobola, Abdullahi Owolabi
- Date: 2012
- Subjects: Copper , Schiff bases , Ligands
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4534 , http://hdl.handle.net/10962/d1016258
- Description: This study focuses on the antimicrobial activity of Cu(II) complexes of some orthohydroxybenzaldimines and its derivatives. Four different categories of Schiff base ligands were prepared by condensing salicylaldehyde, o-vanillin, p-vanillin and vanillin with p- and osubstituted anilines; 1-aminonaphthalene; 2- and 3-aminopyridine; 2- and 3- aminomethylpyridine as well as 2-aminobenzimidazole. The last category was prepared from ophenylenediamine and o-vanillin. The Schiff base ligands have been characterized by a combination of elemental analysis and spectral (¹H- and ¹³C-NMR, UV/Visible, infrared and Raman) data. The existence of strong intramolecular hydrogen bonding in the orthohydoxybenzaldimines was evident from the chemical shift values of the hydroxyl proton in the ¹H-NMR spectra of the Schiff base ligands. The hydroxyl proton resonates at high frequency and thus absorbed far downfield at 13.46-11.83 ppm, reflecting the presence of hydrogen bonding between the hydroxyl proton and the imine nitrogen. In the p-substituted aniline analogues of the Schiff base, a plot of the chemical shift values of the hydroxyl proton against the Hammett's substituent parameters gave a linear correlation between the electronegativities of the substituents and the chemical shift values. The nitro group with the highest electronegativity caused the least deshielding of the hydroxyl proton and thus absorbed upfield compared to the less electronegative substituents such as the CH3 and OCH3 analogues. Likewise, in the solid state infrared spectra of the ligands, the hydroxyl stretching band of the ortho-hydroxyl Schiff base ligands was observed as a very broad band and at much lower frequency, 3100-2100 cm⁻¹, indicating the existence of strong intramolecular hydrogen bonding. In the same vein, ¹H- and ¹³C-NMR spectral data for the Schiff base ligands indicated that the prepared compounds exist in the enol form in aprotic solvent, chloroform. The methine proton appeared as singlet and there was no carbonyl signal in the ¹³C-NMR spectra of the Schiff base ligands. This was supported by the infrared data having no vibrational band attributable to the carbonyl stretching of the keto-form of the Schiff base ligands in solid state. However, the UV/Visible study of the Schiff base ligands in protic solvent, methanol, suggested the existence of some of the Schiff base ligands in keto-enol form. A band at greater than 400 nm was observed in the UV/Visible spectra of the ligands and this has been attributed to the presence of the keto form of orthohydroxyl Schiff base ligands in solution. A plot of the molar absorptivity (ε) of the band at greater than 400 nm against Hammett substituent parameters revealed that the intensity of the bands increased with the electronegativity of the substituents. The Cu(II) complexes of salicylaldehyde, o-vanillin and a few p-vanillin based Schiff base ligands are reported in this work. It was observed that introduction of Cu(II) ions into the ligand system resulted in the hydrolysis of the imine band in few cases. All the isolated complexes have been characterized by elemental analysis, conductivity measurement, infrared and UV/Visible spectral data. The structures of three of the Cu(II) complexes were further confirmed by X-ray single crystal diffraction. The Schiff base ligands either coordinated as neutral base through the imine nitrogen or via the imine nitrogen and the phenolic oxygen atoms. In addition, the benzimidazole-based and ovan-2-pico analogues equally coordinated through the imidazole N-3 nitrogen and the azine nitrogen respectively; thus acted as tridentate. In general, the synthesized Cu(II) complexes fell into seven categories viz: [Cu(LH)Cl(H₂O)]Cl; [Cu(LH)₂Cl₂].xH₂O; [CuL₂]; [Cu₂L₂]; [Cu(LH)Cl(H₂O)]Cl; and [MLCl]. The Cu(II) complexes of the form, M(LH)₂Cl₂.xH₂O were either 1:1 or non-electrolyte in methanol and DMF. The third category, CuL₂, was however, non-electrolyte existing as neutral four coordinate Cu(II) complexes. X-ray single crystal structure of Cu(II) complexes derived from the ammonia-based Schiff bases revealed a square planar geometry for the complexes and this agreed with the planar geometry that has been reported for Cu(II) complexes of N-arylsalicylaldimines of the type studied in this work. The complexes, [Cu₂L₂], resulted from the ortho-hydroxyaniline analogues and were polymeric with the Schiff base ligands coordinating to the Cu(II) ions as tridentate dibasic via the imine nitrogen, phenolic oxygen and the aminophenolic oxygen atoms. Cu(II) complexes prepared from ovan-2-ampy and ovan-2-pico Schiff bases were of the forms [Cu(LH)Cl(H₂O)]Cl and [CuLCl] respectively. The X-ray crystal structure of [Cu(ovan-2- pico)Cl] revealed a four-coordinate square planar geometry for the complex. In the same vein, the o-phenylenediamine complexes were of the form [Cu(L)(H₂O)], with the X-ray crystal structure of [Cu(bis-ovanphen)(H₂O)] revealing a square pyramidal geometry. The Schiff base ligands and the isolated Cu(II) complexes have been evaluated for their antimicrobial activity against three bacterial strains (Escherichia coli ATCC® 8739™*, Staphylococcus aureus subsp. aureus ATCC® 6538™* and Bacillus subtilis subsp. spizizeni ATCC® 6633™*) and one fungal strain, Candida albicans ATCC® 2091™*, using agar disc diffusion and broth dilution techniques. It was observed that the presence of the methoxyl group at the ortho-position of the aldehyde moiety of the Schiff base ligands enhanced the activity of the ligand tremendously and thus the o-vanillin analogues showed the highest potency against the tested organisms. In addition, the hydroxyaniline analogues were equally the most promising of all the substituted aniline based Schiff bases. The o-vanillin analogues of the aminopyridines and aminomethylpyridines also exhibited significant activity against the tested organisms. All the 2-aminobenzimidazole series were active against the tested organisms. It should be noted that E. coli was the least susceptible of all the microorganisms while the highest potency was exhibited against the fungus of choice, Candida albicans. Lastly, chelation of the Schiff base ligands with Cu(II) ions did not have significant influence on the activity of the free ligands.
- Full Text:
- Date Issued: 2012
A bioinorganic investigation of some metal complexes of the Schiff base, N,N'-bis(3-methoxysalicylaldimine)propan-2-ol
- Authors: Mopp, Estelle
- Date: 2010 , 2012-04-13
- Subjects: Schiff bases , Bioinorganic chemistry , Metal complexes , Transition metal complexes , Transition metals , Cancer -- Chemotherapy , Ligands -- Toxicity , Antineoplastic agents
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4413 , http://hdl.handle.net/10962/d1006768 , Schiff bases , Bioinorganic chemistry , Metal complexes , Transition metal complexes , Transition metals , Cancer -- Chemotherapy , Ligands -- Toxicity , Antineoplastic agents
- Description: This thesis includes the synthesis, characterisation, antioxidant and antimicrobial activities of Cu(II)-, Co(II)- and Co(III) complexes with N,N'-bis(3- methoxysalicylaldimine)propan-2-ol, 2-OH-oVANPN. The Schiff base ligand, 2-OHoVANPN, is derived from o-vanillin and 1,3-diaminopropan-2-ol. The o-vanillin condensed with 1,3-diaminopropan-2-ol in a 2:1 molar ratio yields this potential tetraor pentadentate ligand. The complexes synthesized are tetra (or penta or hexa) coordinated. Formation of the complexes is symbolized as follows:- MX₂ + 2-OH-oVANPN (2:1) -> [M(2-OH-oVANPN)Xn] + HnX MX₂ + 2-OH-oVANPN (2:1) -> [Mn(2-OH-oVANPN)OH] + H₂X₂ MX₂ + (o-vanillin : diaminopropanol) (1:1) -> [M(1:1)X₂] MX₂ + (o-vanillin : diaminopropanol) (1:1) -> [M₃(1:1)X₄] M = Cu(II), Co(II) or Co(III); X = Cl; n = 1, 2. Their structural features have been deduced from their elemental analytical data, IR spectral data, and electronic spectral data. With the exception of {Cu₃(C₁₁H₁₄N₂O₃)(Cl)₄(H₂O)₆}(A4), the Cu(II) complexes were monomeric with 2-OH-oVANPN acting as a tetradentate ligand. A binuclear Co(II) complex, [Co₂(C₁₉H₁₉N₂O₅)(OH)] (B1), was synthesised and the rest of the Co(II) and Co(III) complexes were monomeric with chloride ions coordinating to the metal centre in some cases. Electronic data suggest that the cobalt(II) complexes have octahedral geometries and the copper(II) complexes have square planar structures – Co(III) is likely to be octahedral. Thermal analyses, which included the copper-block-method for determining sublimation temperatures, revealed that some copper(II) and cobalt(II) complexes are hygroscopic and sublime at 200 °C and below. DSC analyses of the Cu(II) complexes gave exotherms around 300 °C for complexes K[Cu(C₁₉H₂₀N₂O₅)(OH)]·2H₂O (A1) and [Cu(C₁₁H15N₂O₃)(Cl)₂]·2H₂O (A2) and above 400 °C for [Cu(C₁₁H₁₆N₂O₃)(Cl)₂] (A3) and {Cu₃(C₁₁H₁₄N₂O₃)(Cl)₄(H₂O)₆} (A4). Antioxidant studies were carried out against the 2,2-diphenyl-1-picrylhydrazyl radical (DPPH·). The cobalt(II) complex, [Co₂(C₁₉H₁₉N₂O₅)(OH)] (B1), which was synthesized in the presence of KOH, had no antioxidant activity, whilst the other cobalt(II) complexes, [Co(C₁₇H₁₇N₂O₅(Cl))]·1½H₂O (B2), [Co(C₁₉H₂₂N₂O₅) (Cl)₂]·5½H₂O (B3) and [Co(C₁₉H₂₂N₂O₅)(Cl)₂]·5½H₂O (B4), which were synthesised in the absence of KOH, demonstrated antioxidant activity. The latter complexes are candidates for cancer cell line testing, while [Cu(C₁₁H₁₆N₂O₃)(Cl)₂] (A3), {Cu₃(C₁₁H₁₄N₂O₃)(Cl)₄(H₂O)₆} (A4), [Co(C₁₉H₂₁N₂O₅)(Cl)₂ ]·5H₂O (C2) and [Co(C₁₉H₂₀N₂O₅)(Cl)]·3H₂O (C3) may show anticancer activity through possible hydrolysis products. Most of the complexes synthesized displayed antimicrobial activity against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Aspergillus niger and Candida albicans. The results indicated that complexes [Cu(C₁₁H₁₆N₂O₃)(Cl)₂](A3), [Co(C₁₉H₂₂N₂O₅)(Cl)₂]·5½H₂O (B3) and [Co(C₁₉H₂₁N₂O₅)(Cl)₂ ]·5H₂O (C2) are active against the Gram-negative Ps. aeruginosa and that the ligand, 2-OH-oVANPN, did not have any activity. The same trend was observed with 2-OH-oVANPN, {Cu₃(C₁₁H₁₄N₂O₃)(Cl)4(H₂O)₆} (A4) and [Co(C₁₉H₂₀N₂O₅)(Cl)]·3H₂O (C3) against the Gram-positive S. aureus. As for activity against E. coli and C. albicans, some complexes showed more activity than the ligand. There is an observed trend here that the metal complexes are more active (toxic) than the corresponding ligand, which is in agreement with Tweedy’s chelation theory.
- Full Text:
- Date Issued: 2010
A spectroscopic study of the electronic effects on copper (II) and copper (I) complexes of ligands derived from various substituted benzyaldehyde- and cinnamaldehyde- based schiff bases
- Authors: Magwa, Nomampondo Penelope
- Date: 2010 , 2010-03-19
- Subjects: Copper -- Analysis , Schiff bases , Organometallic compounds
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4407 , http://hdl.handle.net/10962/d1006712 , Copper -- Analysis , Schiff bases , Organometallic compounds
- Description: Several Schiff base ligands, N, N‟-(aryl)benzyaldiimine ligands (R-BEN); N, N‟-(aryl)benzyaldiamine dihydrochloride ligands (R-BENH•2HCl); N, N‟-(aryl)benzyaldiamine ligands (R-BENH); N, N‟-bis(cinnamaldiimine) ligands (R-CA2EN) were synthesized for the investigation of the electronic effect of the substituents at para-position of the Schiff base ligands and their copper complexes. The synthesis of Schiff bases was carried out by reacting a series of para-substituted benzyaldehyde, and para-substituted cinnamaldehyde with ethylenediamine. The imine group of Schiff bases, N, N‟-(aryl)benzyaldiimine ligands and N, N‟-bis(cinnamaldiimine)ligands were reduced to corresponding amines with sodium borohydride in methanol These ligands, N, N‟-(aryl)benzyaldiamine ligands (H-BENH), N, N‟-bis(cinnamaldiimine)ligands (CA2EN) were reacted with copper(II) dihalide and copper(I) monohalide ions respectively to form complexes. The ligands and their complexes were analysed using elemental analyses, FT-IR spectroscopy (mid-IR), UV/vis in aprotic and protic solvents,while mass spectrometry, 1H-NMR and 13C-NMR were used to further analyse the ligands. By using substituent parameters, both the single and dual substituent parameters with the spectroscopic data obtained from the spectroscopic techiques mentioned above, it was hoped to monitor and determine whether the electronic effects (resonance or inductive effcets) was predominantly within the Schiff base ligands and copper complexes. The NMR studies with dual substituent parameters suggest that the effects of the substituents are transimitted through the ligands, via resonance effects and that the phenyl group is nonplanar with the azomethine in N, N‟-(aryl)benzyaldiimine ligands. The presence of an extra double bond in Schiff base {(N, N‟-bis(cinnamaldiimine) ligand)} altered the electron density. The UV/vis studies showed that the symmetry of the N, N‟-bis(4-R-benzyl)-1, 2-diaminoethanedihalidecopper(II) complexes were predominantly tetrahedral for both chloro and bromo complexes. The correlation studies from mid-infrared were beneficial in monitoring the effect experienced by N, N‟-(aryl)benzaldiimine ligands, the studies suggest that the inductive effect is more pronounced at the C=N.
- Full Text:
- Date Issued: 2010
Complexes of the ReO³⁺/Re(CO)₃cores with multidentate N,O-Donor chelates
- Authors: Potgieter, Kim Carey
- Date: 2009
- Subjects: Rhenium , Schiff bases
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:10387 , http://hdl.handle.net/10948/1225 , Rhenium , Schiff bases
- Description: This study investigates the coordination modes of multidentate N,O-donor ligands toward the [ReVO]3+ and fac-[ReI(CO)3]+ cores. The reactions of trans-[ReOX3(PPh3)2] (X = Cl, Br) with 4-aminoantipyrine (H2pap) were studied, and the complexes cis-[ReX2(pap)(H2pap)(PPh3)](ReO4) were isolated. The X-ray crystal structures show that both complexes display a distorted octahedral geometry around the central rhenium atom, and are mirror images of each other. The ligand pap is coordinated monodentately through the doubly deprotonated amino nitrogen as an imide, and H2pap acts as a neutral bidentate chelate, with coordination through the neutral amino nitrogen and the ketonic oxygen. The attempted synthesis of the potentially hexadentate Schiff base ligand 1,2-bis(2-{(Z)- [(2-hydroxyphenyl)imido]methyl}phenoxy)benzene from the condensation reaction of 2- (2-((2-aminophenoxy)methyl)benzyloxy)benzenamine and salicylaldehyde produced the zwitterion derivative (H2ono) of 2-{(Z)-[2-(hydroxyphenyl)imino]methyl}phenol. The tridentate Schiff bases (Z)-2-(2-aminobenzylideneamino)phenol (H3onn) and (Z)-2-(2- (methylthio)benzylideneamino)phenol (Hons) were prepared in a similar manner. The reaction of H2ono with trans-[ReOBr3(PPh3)2] surprisingly led to the isolation of the rhenium(III) complex [ReBr(PPh3)2(ono)], in which ono acts as a dianionic tridentate ligand. The reaction of H3onn with trans-[ReOBr3(PPh3)2] produced the imidorhenium(V) complex salt [ReBr(PPh3)2(onn)]Br, in which onn is coordinated as a trianionic tridentate imidoiminophenolate. The reaction of Hons with [Re(CO)5Br] led to the further decomposition of the Hons ligand, and the rhenium(I) product fac- [Re(CO)3(ons)(Hno)] (Hno = 2-aminophenol) was isolated, with ons coordinated as a monoanionic bidentate chelate (with a free SCH3 group), and Hno present as a neutral monodentate ligand with coordination through the amino nitrogen atom. Abstract Nelson Mandela Metropolitan University vi The reactions of the potentially hexadentate ligand N,N’-{ethane-1,2- diylbis[nitrilomethylidenebenzene-1,2-diyl]}bis(2-aminobenzeneimine) (H2ted) with rhenium(V) starting materials resulted in the decomposition of the H2ted molecule to give different coordinated multidentate ligands coordinated to the rhenium(V) centers. In the reaction of H2ted with trans-[ReOBr3(PPh3)2] in ethanol, the highly unusual ‘3+3’ complex cation [Re(tnn)(Htnn)]Br2 was isolated, in which tnn is coordinated as a tridentate imido-imino-amine, and Htnn is present as a tridentate monoanionic amidoimino- amine chelate (H2tnn = N-(2-aminophenylmethylidene)ethane-1,2-diamine). With trans-[ReO2(py)4]Cl as starting material, the neutral complex [ReO(dne)] was found, in which the tetradentate chelate dne acts as a triamido-imine. The reaction of cis- [ReO2I(PPh3)2] with H2ted led to the formation of the monocationic complex salt [ReO(ane)]PF6, with ane acting as a tetradentate dianionic diamidodiimine (H2ane = N,N’-bis[(2-aminophenyl)methylidene] ethane-1,2-diamine). The seven-coordinate rhenium(III) complex cation [Re(dhp)(PPh3)2]+ (H2dhp = 2,6-bis(2- hydroxyphenyliminomethyl)pyridine) was isolated as the iodide salt from the reaction of cis-[ReO2I(PPh3)2] with H2dhp in ethanol and as the perrhenate salt from the reaction of trans-[ReOBr3(PPh3)2] with H2dhp in methanol. Both products result from a disproportionation reaction with perrhenate also being produced in the process. The complex fac-[Re(CO)3(H2dhp)Br] was prepared from [Re(CO)5Br] and H2dhp in toluene, where the H2dhp ligand acts as a neutral bidentate NN-donor chelate. The metal is coordinated to three carbonyl donors in a facial orientation, to a neutral imino nitrogen, a pyridinic nitrogen and a bromide.
- Full Text:
- Date Issued: 2009