Developing a citizen technician based approach to suspended sediment monitoring in the Tsitsa River catchment, Eastern Cape, South Africa
- Authors: Bannatyne, Laura Joan
- Date: 2018
- Subjects: Sediments (Geology) -- Management , Sediments (Geology) -- South Africa -- Eastern Cape , Watersheds -- South Africa -- Eastern Cape , Suspended sediments -- South Africa -- Eastern Cape , Suspended sediments -- Monitoring -- Citizen participation , Tsitsa River
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/62593 , vital:28211
- Description: Suspended sediment (SS) in channels is spatiotemporally heterogeneous and, over the long term, is known to be moved predominantly by flood flows with return periods of ~1 - 1.5 years. Flood flows in the Tsitsa catchment (Eastern Cape Province, South Africa) are unpredictable, and display a wide range of discharges. Direct, flood-focused SS sampling at sub-catchment scale was required to provide a SS baseline against which to monitor the impact on SS of catchment rehabilitation interventions, to determine the relative contributions of sub-catchments to SS loads and yields at the site of the proposed Ntabelanga Dam wall, and to verify modelled SS baselines, loads and yields. Approaches to SS sampling relying on researcher presence and/or installed equipment to adequately monitor SS through flood flows were precluded by cost, and the physical and socioeconomic conditions in the project area. A citizen technician (CT)-based flood-focused approach to direct SS sampling was developed and implemented. It was assessed in terms of its efficiency and effectiveness, the proficiency of the laboratory analysis methods, and the accuracy of the resulting SS data. A basic laboratory protocol for SSC analysis was developed, but is not the focus of this thesis. Using basic sampling equipment and smartphone-based reporting protocols, local residents at eleven points on the Tsitsa River and its major tributaries were employed as CTs. They were paid to take water samples during daylight hours at sub-daily timestep, with the emphasis on sampling through flood flows. The method was innovative in that it opted for manual sampling against a global trend towards instrumentation. Whilst the management of CTs formed a significant project component, the CTs benefitted directly through remuneration and work experience opportunities. The sampling method was evaluated at four sites from December 2015 - May 2016. The CTs were found to have efficiently and effectively sampled SS through a range of water levels, particularly in the main Tsitsa channel. An acceptable level of proficiency and accuracy was achieved, and many flood events were successfully defined by multiple data points. The method was chiefly limited by the inability of CTs to sample overnight rises and peaks occurring as a result of afternoon thunderstorms, particularly in small tributaries. The laboratory process was responsible for some losses in proficiency and accuracy. Improved laboratory quality control was therefore recommended. The CT-based approach can be adapted to other spatial and temporal scales in other areas, and to other environmental monitoring applications.
- Full Text:
- Date Issued: 2018
- Authors: Bannatyne, Laura Joan
- Date: 2018
- Subjects: Sediments (Geology) -- Management , Sediments (Geology) -- South Africa -- Eastern Cape , Watersheds -- South Africa -- Eastern Cape , Suspended sediments -- South Africa -- Eastern Cape , Suspended sediments -- Monitoring -- Citizen participation , Tsitsa River
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/62593 , vital:28211
- Description: Suspended sediment (SS) in channels is spatiotemporally heterogeneous and, over the long term, is known to be moved predominantly by flood flows with return periods of ~1 - 1.5 years. Flood flows in the Tsitsa catchment (Eastern Cape Province, South Africa) are unpredictable, and display a wide range of discharges. Direct, flood-focused SS sampling at sub-catchment scale was required to provide a SS baseline against which to monitor the impact on SS of catchment rehabilitation interventions, to determine the relative contributions of sub-catchments to SS loads and yields at the site of the proposed Ntabelanga Dam wall, and to verify modelled SS baselines, loads and yields. Approaches to SS sampling relying on researcher presence and/or installed equipment to adequately monitor SS through flood flows were precluded by cost, and the physical and socioeconomic conditions in the project area. A citizen technician (CT)-based flood-focused approach to direct SS sampling was developed and implemented. It was assessed in terms of its efficiency and effectiveness, the proficiency of the laboratory analysis methods, and the accuracy of the resulting SS data. A basic laboratory protocol for SSC analysis was developed, but is not the focus of this thesis. Using basic sampling equipment and smartphone-based reporting protocols, local residents at eleven points on the Tsitsa River and its major tributaries were employed as CTs. They were paid to take water samples during daylight hours at sub-daily timestep, with the emphasis on sampling through flood flows. The method was innovative in that it opted for manual sampling against a global trend towards instrumentation. Whilst the management of CTs formed a significant project component, the CTs benefitted directly through remuneration and work experience opportunities. The sampling method was evaluated at four sites from December 2015 - May 2016. The CTs were found to have efficiently and effectively sampled SS through a range of water levels, particularly in the main Tsitsa channel. An acceptable level of proficiency and accuracy was achieved, and many flood events were successfully defined by multiple data points. The method was chiefly limited by the inability of CTs to sample overnight rises and peaks occurring as a result of afternoon thunderstorms, particularly in small tributaries. The laboratory process was responsible for some losses in proficiency and accuracy. Improved laboratory quality control was therefore recommended. The CT-based approach can be adapted to other spatial and temporal scales in other areas, and to other environmental monitoring applications.
- Full Text:
- Date Issued: 2018
Isolation and characterisation of lignocellulose degrading bacteria from Tyume River in the Eastern Cape Province, South Africa
- Authors: Tembisa, Papiyana Ayavuya
- Date: 2015
- Subjects: Lignocellulose -- Biodegradation -- South Africa -- Eastern Cape , Bacillus (Bacteria) -- South Africa -- Eastern Cape , Waterborne infection -- South Africa -- Eastern Cape , Bacteriophages -- South Africa -- Eastern Cape , Sediments (Geology) -- South Africa -- Eastern Cape
- Language: English
- Type: Thesis , Masters , MSc (Microbiology)
- Identifier: vital:11299 , http://hdl.handle.net/10353/d1021293 , Lignocellulose -- Biodegradation -- South Africa -- Eastern Cape , Bacillus (Bacteria) -- South Africa -- Eastern Cape , Waterborne infection -- South Africa -- Eastern Cape , Bacteriophages -- South Africa -- Eastern Cape , Sediments (Geology) -- South Africa -- Eastern Cape
- Description: This study focuses on the isolation and characterization of bacteria from lignocellulosic biomass obtained from the sediments of the Tyume River in Alice, Eastern Cape and to determine those bacterial isolates with good potential for modification and decomposition of lignocellulosic biomass for industrial application. Several bacterial isolates were recovered and screened for ability to degrade various lignocellulosic materials. Nine of the isolates were positive for lignocellulolytic activity. Four isolates were cellulase positive and six were xylanase positive. Moreover, one isolate (SB1) was positive for both xylanase and cellulase activities and showed the best hydrolysis zone on solid media. This isolate was then chosen as the best and identified molecularly. The 16S rDNA sequence analysis indicated that SB1 was a Bacillus cereus species. Factors affecting the cellulose and xylanase enzyme production by the organisms were studied. The organisms produced the enzymes maximally at earlier hours of incubation (12-30 hr) and optimally at acidic pH (3-5) and at moderate temperatures (35-45ºC). SB1 appears to hold promise in the decomposition of lignocellulosic wastes.
- Full Text:
- Date Issued: 2015
- Authors: Tembisa, Papiyana Ayavuya
- Date: 2015
- Subjects: Lignocellulose -- Biodegradation -- South Africa -- Eastern Cape , Bacillus (Bacteria) -- South Africa -- Eastern Cape , Waterborne infection -- South Africa -- Eastern Cape , Bacteriophages -- South Africa -- Eastern Cape , Sediments (Geology) -- South Africa -- Eastern Cape
- Language: English
- Type: Thesis , Masters , MSc (Microbiology)
- Identifier: vital:11299 , http://hdl.handle.net/10353/d1021293 , Lignocellulose -- Biodegradation -- South Africa -- Eastern Cape , Bacillus (Bacteria) -- South Africa -- Eastern Cape , Waterborne infection -- South Africa -- Eastern Cape , Bacteriophages -- South Africa -- Eastern Cape , Sediments (Geology) -- South Africa -- Eastern Cape
- Description: This study focuses on the isolation and characterization of bacteria from lignocellulosic biomass obtained from the sediments of the Tyume River in Alice, Eastern Cape and to determine those bacterial isolates with good potential for modification and decomposition of lignocellulosic biomass for industrial application. Several bacterial isolates were recovered and screened for ability to degrade various lignocellulosic materials. Nine of the isolates were positive for lignocellulolytic activity. Four isolates were cellulase positive and six were xylanase positive. Moreover, one isolate (SB1) was positive for both xylanase and cellulase activities and showed the best hydrolysis zone on solid media. This isolate was then chosen as the best and identified molecularly. The 16S rDNA sequence analysis indicated that SB1 was a Bacillus cereus species. Factors affecting the cellulose and xylanase enzyme production by the organisms were studied. The organisms produced the enzymes maximally at earlier hours of incubation (12-30 hr) and optimally at acidic pH (3-5) and at moderate temperatures (35-45ºC). SB1 appears to hold promise in the decomposition of lignocellulosic wastes.
- Full Text:
- Date Issued: 2015
Sedimentary environments and provenance of the Balfour Formation (Beaufort Group) in the area between Bedford and Adelaide, Eastern Cape Province, South Africa
- Authors: Oghenekome, Monica Enifome
- Date: 2012
- Subjects: Geology -- South Africa -- Balfour , Sedimentary basins -- South Africa -- Eastern Cape , Sediments (Geology) -- South Africa -- Eastern Cape , Sedimentation analysis , Beaufort Group (South Africa)
- Language: English
- Type: Thesis , Masters , MSc (Geology)
- Identifier: vital:11524 , http://hdl.handle.net/10353/d1004354 , Geology -- South Africa -- Balfour , Sedimentary basins -- South Africa -- Eastern Cape , Sediments (Geology) -- South Africa -- Eastern Cape , Sedimentation analysis , Beaufort Group (South Africa)
- Description: The research examines the sedimentary environments and provenance of the Balfour Formation of the Beaufort Group (Karoo Supergroup) in the Eastern Cape Province, South Africa. This Formation occurs in the southeastern part of the Karoo Basin. It consists of sedimentary rocks, which are an alternating siltstone, shale and mudstone succession with subordinate interbedded sandstone and subsequently intruded by Karoo dolerite in the form of sills and dykes. ithostratigraphically, the Balfour Formation is subdivided into five units namely, from the base to the top, the Oudeberg, Daggaboersnek, Barberskrans, Elandsberg and Palingkloof Members. The Balfour Formation is overlain by the Katberg Formation. This study involved field investigations in the vicinity of the towns of Bedford and Adelaide with integrated stratigraphical, sedimentological and petrological studies. A geological map was constructed after field investigations. Lithofacies of the Balfour Formation that were studied are characterised by sandstone facies (Sh, Sm, St, Sr, Sp) and fine-grained sediments (Fl or Fsm) which reflect point-bar, cut-bank, channel and floodplain deposits. Lithologically, the Oudeberg Member consists of sandstone of which some units are internally massive alternating with thin laminated siltstone and mudstone. The Daggaboersnek Member is characterised by regular, generally non-lenticular, overall stratification, in the Barberkrans Member consists of sandstone lithosomes, while the Elandsberg Member is an argillaceous unit, similar to the Daggaboersnek Member. The Palingkloof Member is composed predominantly of red mudstone that can be used to distinguish the Balfour Formation from the overlying Katberg Formation, which consists predominantly of sandstone. The stratigraphic sequence displays two fining upward megacycles of sedimentary deposits with change in the sediment supply pattern from low-sinuosity to high-sinuosity river systems which reflect both braid and meandering deposits, respectively. Sedimentary structures in the sandstone units and the provenance of the Balfour Formation indicate that these deposits were produced by rivers flowing from the southeast with minor drift towards the northwest. According to the composition of the sediments and their sequence of deposition the Formation represents a fluvial environment. Mineralogical and grain size data from the sandstones of the various members of the Balfour Formation indicate the same source area of granitic, metamorphic and older sedimentary rocks and show no significant petrographic differences. The petrographic and geochemical investigations confirmed the sandstone to be feldspathic litharenite and ultralithofeldspathic sandstone. The palaeocurrent investigation indicates the main provenance to have been situated to the southeast of the Karoo basin. Heavy-mineral concentrations within the sandstones also give an indication that the source had a transitional arc plate tectonic setting.
- Full Text:
- Date Issued: 2012
- Authors: Oghenekome, Monica Enifome
- Date: 2012
- Subjects: Geology -- South Africa -- Balfour , Sedimentary basins -- South Africa -- Eastern Cape , Sediments (Geology) -- South Africa -- Eastern Cape , Sedimentation analysis , Beaufort Group (South Africa)
- Language: English
- Type: Thesis , Masters , MSc (Geology)
- Identifier: vital:11524 , http://hdl.handle.net/10353/d1004354 , Geology -- South Africa -- Balfour , Sedimentary basins -- South Africa -- Eastern Cape , Sediments (Geology) -- South Africa -- Eastern Cape , Sedimentation analysis , Beaufort Group (South Africa)
- Description: The research examines the sedimentary environments and provenance of the Balfour Formation of the Beaufort Group (Karoo Supergroup) in the Eastern Cape Province, South Africa. This Formation occurs in the southeastern part of the Karoo Basin. It consists of sedimentary rocks, which are an alternating siltstone, shale and mudstone succession with subordinate interbedded sandstone and subsequently intruded by Karoo dolerite in the form of sills and dykes. ithostratigraphically, the Balfour Formation is subdivided into five units namely, from the base to the top, the Oudeberg, Daggaboersnek, Barberskrans, Elandsberg and Palingkloof Members. The Balfour Formation is overlain by the Katberg Formation. This study involved field investigations in the vicinity of the towns of Bedford and Adelaide with integrated stratigraphical, sedimentological and petrological studies. A geological map was constructed after field investigations. Lithofacies of the Balfour Formation that were studied are characterised by sandstone facies (Sh, Sm, St, Sr, Sp) and fine-grained sediments (Fl or Fsm) which reflect point-bar, cut-bank, channel and floodplain deposits. Lithologically, the Oudeberg Member consists of sandstone of which some units are internally massive alternating with thin laminated siltstone and mudstone. The Daggaboersnek Member is characterised by regular, generally non-lenticular, overall stratification, in the Barberkrans Member consists of sandstone lithosomes, while the Elandsberg Member is an argillaceous unit, similar to the Daggaboersnek Member. The Palingkloof Member is composed predominantly of red mudstone that can be used to distinguish the Balfour Formation from the overlying Katberg Formation, which consists predominantly of sandstone. The stratigraphic sequence displays two fining upward megacycles of sedimentary deposits with change in the sediment supply pattern from low-sinuosity to high-sinuosity river systems which reflect both braid and meandering deposits, respectively. Sedimentary structures in the sandstone units and the provenance of the Balfour Formation indicate that these deposits were produced by rivers flowing from the southeast with minor drift towards the northwest. According to the composition of the sediments and their sequence of deposition the Formation represents a fluvial environment. Mineralogical and grain size data from the sandstones of the various members of the Balfour Formation indicate the same source area of granitic, metamorphic and older sedimentary rocks and show no significant petrographic differences. The petrographic and geochemical investigations confirmed the sandstone to be feldspathic litharenite and ultralithofeldspathic sandstone. The palaeocurrent investigation indicates the main provenance to have been situated to the southeast of the Karoo basin. Heavy-mineral concentrations within the sandstones also give an indication that the source had a transitional arc plate tectonic setting.
- Full Text:
- Date Issued: 2012
- «
- ‹
- 1
- ›
- »