A statistical study of travelling ionospheric disturbances over the African-European and American sectors
- Authors: Thaganyana, Golekamang Piet
- Date: 2023-03-31
- Subjects: Sudden ionospheric disturbances , Global Positioning System , Gravitational waves , Geomagnetic storm , Ionosphere
- Language: English
- Type: Academic theses , Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/422541 , vital:71956 , DOI 10.21504/10962/422543
- Description: This research presents a long-term statistical study of travelling ionospheric disturbances (TIDs) of low- and high-latitude origin over the American and African-European sectors between 2010 and 2018. The TIDs of low latitude origin (hereafter known as poleward TIDs) were studied in both quiet and disturbed conditions, whereas the equatorward TIDs were only studied during quiet conditions. The Kp > 4 and Dst_ -50 nT was used as a criterion for geomagnetic disturbed conditions, while the four geomagnetically quiet days were selected each month based on Kp < 3. Observations of TIDs are made using Global Navigational Satellite Systems (GNSS) total electron content derived data. During quiet conditions, seven and two transhemispheric TIDs were identified over the African-European and American sectors, respectively. The observed TIDs originated from the wintertime hemisphere and propagated into the summertime hemisphere. The horizontal velocity, periods, and horizontal wavelengths of TIDs are in range of cH = 120-274 m/s, 48-80 min and _H = 379-1104 km, respectively. These quiet-time equatorward TIDs have been associated with tertiary gravity waves (GWs) from the dissipation of secondary GWs which are in turn generated from the dissipation of mountain waves (MWs) as a result of excited orographic forcing. The poleward TIDs during geomagnetically quiet conditions over the African and American sectors occur mainly during local daytime. Poleward TIDs were observed mostly in the African-European sector than the American sector. Their horizontal propagation velocities and periods range between 129-280 m/s and 39-70 min over African-European and American sectors. Although the mechanisms responsible for launching quiet-time poleward TIDs have not been established in this study, lower atmospheric processes such as convection systems, sudden stratospheric warming and cold weather fronts may have a role in their generation. During geomagnetic storms in the African sector, almost all poleward TIDs (with the exception of two cases) during the main phase were large-scale with horizontal velocities and periods ranging from 250-503 m/s and 30 min to 2 hours. During recovery phase, poleward TIDs fall under the category of medium scale. In the American sector, the majority of poleward TIDs occurred during the storm's main phase, as opposed to the African-European sector, which experienced a significant number of poleward TIDs during the recovery phase. The periods and horizontal velocities of TIDs range from 45 min-1.5 h and 180-296 m/s during main phase. During the recovery phase, the horizontal velocity and period range from 177-271 m/s and 40-1.5 h, respectively. Overall, it has been shown that statistically, changes in equatorial electrodynamics related to enhanced eastward electric _eld and hence increased equatorial electrojet (vertical E_B drift) correlates highly with the reported poleward TIDs. , Thesis (PhD) -- Faculty of Science, Physics and Electronics, 2023
- Full Text:
- Date Issued: 2023-03-31
- Authors: Thaganyana, Golekamang Piet
- Date: 2023-03-31
- Subjects: Sudden ionospheric disturbances , Global Positioning System , Gravitational waves , Geomagnetic storm , Ionosphere
- Language: English
- Type: Academic theses , Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/422541 , vital:71956 , DOI 10.21504/10962/422543
- Description: This research presents a long-term statistical study of travelling ionospheric disturbances (TIDs) of low- and high-latitude origin over the American and African-European sectors between 2010 and 2018. The TIDs of low latitude origin (hereafter known as poleward TIDs) were studied in both quiet and disturbed conditions, whereas the equatorward TIDs were only studied during quiet conditions. The Kp > 4 and Dst_ -50 nT was used as a criterion for geomagnetic disturbed conditions, while the four geomagnetically quiet days were selected each month based on Kp < 3. Observations of TIDs are made using Global Navigational Satellite Systems (GNSS) total electron content derived data. During quiet conditions, seven and two transhemispheric TIDs were identified over the African-European and American sectors, respectively. The observed TIDs originated from the wintertime hemisphere and propagated into the summertime hemisphere. The horizontal velocity, periods, and horizontal wavelengths of TIDs are in range of cH = 120-274 m/s, 48-80 min and _H = 379-1104 km, respectively. These quiet-time equatorward TIDs have been associated with tertiary gravity waves (GWs) from the dissipation of secondary GWs which are in turn generated from the dissipation of mountain waves (MWs) as a result of excited orographic forcing. The poleward TIDs during geomagnetically quiet conditions over the African and American sectors occur mainly during local daytime. Poleward TIDs were observed mostly in the African-European sector than the American sector. Their horizontal propagation velocities and periods range between 129-280 m/s and 39-70 min over African-European and American sectors. Although the mechanisms responsible for launching quiet-time poleward TIDs have not been established in this study, lower atmospheric processes such as convection systems, sudden stratospheric warming and cold weather fronts may have a role in their generation. During geomagnetic storms in the African sector, almost all poleward TIDs (with the exception of two cases) during the main phase were large-scale with horizontal velocities and periods ranging from 250-503 m/s and 30 min to 2 hours. During recovery phase, poleward TIDs fall under the category of medium scale. In the American sector, the majority of poleward TIDs occurred during the storm's main phase, as opposed to the African-European sector, which experienced a significant number of poleward TIDs during the recovery phase. The periods and horizontal velocities of TIDs range from 45 min-1.5 h and 180-296 m/s during main phase. During the recovery phase, the horizontal velocity and period range from 177-271 m/s and 40-1.5 h, respectively. Overall, it has been shown that statistically, changes in equatorial electrodynamics related to enhanced eastward electric _eld and hence increased equatorial electrojet (vertical E_B drift) correlates highly with the reported poleward TIDs. , Thesis (PhD) -- Faculty of Science, Physics and Electronics, 2023
- Full Text:
- Date Issued: 2023-03-31
Statistical study of traveling ionospheric disturbances over South Africa
- Authors: Mahlangu, Daniel Fiso
- Date: 2019
- Subjects: Ionosphere -- Research , Sudden ionospheric disturbances , Gravity waves , Magnetic storms
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/76387 , vital:30556
- Description: This thesis provides a statistical analysis of traveling ionospheric disturbances (TIDs) in South Africa. The velocities of the TIDs were determined from total electron content (TEC) maps using particle image velocimetry (PIV). The periods were determined using Morlet function in wavelet analysis. The TIDs were grouped into four categories: daytime, twilight, nighttime TIDs, and those TIDs that occurred during magnetic storms. It was found that daytime medium scale TIDs (MSTIDs) propagated equatorward in all seasons (summer, autumn, winter, and spring), with velocities of about 114 to 213 m/s. Their maximum occurrence was in winter between 15:00 and 16:00 LT. The daytime large scale (TIDs) LSTIDs propagated equatorward with velocities of approximately 455 to 767 m/s. Their highest occurrence was in summer, between 12:00-13:00 LT. Most of the these TIDs (about 78%) were observed during the passing of the morning solar terminator. This implied that the morning terminator was more effective in instigating TIDs. Only a few nighttime TIDs were observed and therefore their behavior could not be statistically inferred. The TIDs that occurred during magnetically disturbed conditions propagated equatorward. This indicated that their source mechanism was atmospheric gravity waves generated at the onset of geomagnetic storms.
- Full Text:
- Date Issued: 2019
- Authors: Mahlangu, Daniel Fiso
- Date: 2019
- Subjects: Ionosphere -- Research , Sudden ionospheric disturbances , Gravity waves , Magnetic storms
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/76387 , vital:30556
- Description: This thesis provides a statistical analysis of traveling ionospheric disturbances (TIDs) in South Africa. The velocities of the TIDs were determined from total electron content (TEC) maps using particle image velocimetry (PIV). The periods were determined using Morlet function in wavelet analysis. The TIDs were grouped into four categories: daytime, twilight, nighttime TIDs, and those TIDs that occurred during magnetic storms. It was found that daytime medium scale TIDs (MSTIDs) propagated equatorward in all seasons (summer, autumn, winter, and spring), with velocities of about 114 to 213 m/s. Their maximum occurrence was in winter between 15:00 and 16:00 LT. The daytime large scale (TIDs) LSTIDs propagated equatorward with velocities of approximately 455 to 767 m/s. Their highest occurrence was in summer, between 12:00-13:00 LT. Most of the these TIDs (about 78%) were observed during the passing of the morning solar terminator. This implied that the morning terminator was more effective in instigating TIDs. Only a few nighttime TIDs were observed and therefore their behavior could not be statistically inferred. The TIDs that occurred during magnetically disturbed conditions propagated equatorward. This indicated that their source mechanism was atmospheric gravity waves generated at the onset of geomagnetic storms.
- Full Text:
- Date Issued: 2019
Multi-instrument observations of ionospheric irregularities over South Africa
- Authors: Amabayo, Emirant Bertillas
- Date: 2012
- Subjects: Ionosphere -- Research , Sudden ionospheric disturbances , Ionospheric storms , Solar activity , Sunspots
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5476 , http://hdl.handle.net/10962/d1005261 , Ionosphere -- Research , Sudden ionospheric disturbances , Ionospheric storms , Solar activity , Sunspots
- Description: The occurrence of mid-latitude spread F (SF) over South Africa has not been extensively studied since the installation of the DPS-4 digisondes at Madimbo (30.88◦E, 22.38◦S), Grahamstown (33.32◦S, 26.50◦E) and Louisvale (28.51◦S, 21.24◦E). This study is intended to quantify the probability of the occurrence of F region disturbances associated with ionospheric spread F (SF) and L-band scintillation over South Africa. This study used available ionosonde data for 8 years (2000-2008) from the three South African stations. The SF events were identified manually on ionograms and grouped for further statistical analysis into frequency SF (FSF), range SF (RSF) and mixed SF (MSF). The results show that the diurnal pattern of SF occurrence peaks strongly between 23:00 and 00:00 UT. This pattern is true for all seasons and types of SF at Madimbo and Grahamstown during 2001 and 2005, except for RSF which had peaks during autumn and spring during 2001 at Madimbo. The probability of both MSF and FSF tends to increase with decreasing sunspot number (SSN), with a peak in 2005 (a moderate solar activity period). The seasonal peaks of MSF and FSF are more frequent during winter months at both Madimbo and Grahamstown. In this study SF was evident in ∼ 0.03% and ∼ 0.06% of the available ionograms at Madimbo and Grahamstown respectively during the eight year period. The presence of ionospheric irregularities associated with SF and scintillation was investigated using data from selected Global Positioning System (GPS) receiver stations distributed across South Africa. The results, based on GPS total electron content (TEC) and ionosonde measurements, show that SF over this region can most likely be attributed to travelling ionospheric disturbances (TIDs), caused by gravity waves (GWs) and neutral wind composition changes. The GWs were mostly associated with geomagnetic storms and sub-storms that occurred during periods of high and moderate solar activity (2001-2005). SF occurrence during the low solar activity period (2006-2008)can probably be attributed to neutral wind composition changes.
- Full Text:
- Date Issued: 2012
- Authors: Amabayo, Emirant Bertillas
- Date: 2012
- Subjects: Ionosphere -- Research , Sudden ionospheric disturbances , Ionospheric storms , Solar activity , Sunspots
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5476 , http://hdl.handle.net/10962/d1005261 , Ionosphere -- Research , Sudden ionospheric disturbances , Ionospheric storms , Solar activity , Sunspots
- Description: The occurrence of mid-latitude spread F (SF) over South Africa has not been extensively studied since the installation of the DPS-4 digisondes at Madimbo (30.88◦E, 22.38◦S), Grahamstown (33.32◦S, 26.50◦E) and Louisvale (28.51◦S, 21.24◦E). This study is intended to quantify the probability of the occurrence of F region disturbances associated with ionospheric spread F (SF) and L-band scintillation over South Africa. This study used available ionosonde data for 8 years (2000-2008) from the three South African stations. The SF events were identified manually on ionograms and grouped for further statistical analysis into frequency SF (FSF), range SF (RSF) and mixed SF (MSF). The results show that the diurnal pattern of SF occurrence peaks strongly between 23:00 and 00:00 UT. This pattern is true for all seasons and types of SF at Madimbo and Grahamstown during 2001 and 2005, except for RSF which had peaks during autumn and spring during 2001 at Madimbo. The probability of both MSF and FSF tends to increase with decreasing sunspot number (SSN), with a peak in 2005 (a moderate solar activity period). The seasonal peaks of MSF and FSF are more frequent during winter months at both Madimbo and Grahamstown. In this study SF was evident in ∼ 0.03% and ∼ 0.06% of the available ionograms at Madimbo and Grahamstown respectively during the eight year period. The presence of ionospheric irregularities associated with SF and scintillation was investigated using data from selected Global Positioning System (GPS) receiver stations distributed across South Africa. The results, based on GPS total electron content (TEC) and ionosonde measurements, show that SF over this region can most likely be attributed to travelling ionospheric disturbances (TIDs), caused by gravity waves (GWs) and neutral wind composition changes. The GWs were mostly associated with geomagnetic storms and sub-storms that occurred during periods of high and moderate solar activity (2001-2005). SF occurrence during the low solar activity period (2006-2008)can probably be attributed to neutral wind composition changes.
- Full Text:
- Date Issued: 2012
- «
- ‹
- 1
- ›
- »