Formulation development and thermorheological properties of crumb rubber/eva modified bitumen
- Authors: Nare, Keith Dumisani
- Date: 2016
- Subjects: Crumb rubber Bitumen , Vinyl acetate
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10948/11974 , vital:27015
- Description: The study deals with the formulation development and thermorheological properties of crumb rubber/ethylene vinyl acetate (EVA) modified bitumen with the aim of optimizing the amount of crumb rubber and EVA loadings in bitumen based on thermorheological parameters complex shear modulus, phase angle and rutting parameter. In the modified binders EVA offers plastomer properties whereas the crumb rubber confers elasticity to the bitumen. 13.75% crumb rubber and 2.5% EVA loadings based on aging indices gave the best optimized mixture. The thermorheological behaviour of the best optimized mixture was compared to industrial grade EVA (AP-1) and crumb rubber (AR-1) modified bitumen. Improving aging behaviour of the bitumen was evaluated using four antioxidants: carbon black, hydrated lime, Irganox 1010 and Irgafos 168. The least aging indices at 58˚C and 64˚C were obtained from a 1:1:1 Irganox 1010/hydrated lime/carbon black mixture. SARA (saturates, aromatics, resins and asphaltene) analysis gave the chemical background for application of antioxidants to reduce the propensity of short term aging. To further improve the EVA/crumb rubber optimized mixture for workability FT wax (Sasobit®) was assayed at loadings from 0-2.5%. This was done to match the EVA content and maintain the original maximum loading of 2.5% in the optimized mixture. The phase change abilities of FT wax owing to the high latent heat enabled co-crystallization with the EVA with the elastomeric backbone of crumb rubber acting as support material. The energy-sustainability nexus was found to have worked at less than 1% loading of FT wax in the EVA/crumb rubber modified bitumen. Response surface methodology approach to all the sections of work was used to come up with the optimized mixtures based on rheological parameters complex shear modulus, phase angle and rutting parameter at test temperature 64˚C. The interaction chemistry of bitumen, crumb rubber, EVA and FT wax was found to be first and second order in all cases involving individual contributions and co-interaction amongst the factors. Project costing for each section of work (optimizing section, antioxidant section and FT wax section) was conducted involving the raw materials used, equipment used, labour involved and other costs incurred for all the project work.
- Full Text:
- Date Issued: 2016
An investigation into the use of a ceramifiable Ethylene Vinyl Acetate (EVA) co-polymer formulation to aid flame retardency in electrical cables
- Authors: Bambalaza, Sonwabo Elvis
- Date: 2014
- Subjects: Vinyl acetate , Polymeric composites , Inorganic compounds
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:10433 , http://hdl.handle.net/10948/d1020159
- Description: The concept of a unique ceramifiable Ethylene vinyl acetate (EVA) based polymer composite was based on the incorporation of inorganic compounds such as aluminium hydroxide, calcium carbonate, muscovite mica, and calcined kaolinite within a 95 percent EVA/ 5 percent Polydimethylsiloxane (PDMS) polymer matrix such tha t upon heating to elevated temperatures of about 1000 oC, a solid end-product with ceramic-like properties would be formed. The ceramifiable EVA based polymer composite was developed to be used as electric cable insulation or sheath as the formation of a ceramic based material at elevated temperatures would provide flame retardant properties during fire situations. The flame retardant properties at elevated temperatures would ensure that the insulation remains at such temperatures due to some of the properties of the resultant ceramic such as reasonably high flexural strength, high thermal stability, non-reactivity and high melting point. During a fire this would ensure that flames would not be propagated along the length of the cable and also protect the underlying conducting wires from being exposed to the high temperatures of the fire. Its application as a cable insulation also required that the material functions as a cable insulator under ambient temperature conditions where the ceramifiable polymer composite should retain certain polymer properties such as the post-cure tensile strength (MPa), degree of polymer elongation (percent), thermal expansion, thermal slacking, limited oxygen index and electrical insulation. This study made use of a composite experimental design approach that would allow for the optimization of the amounts of the additives in the ceramifiable polymer composite giving both the desired mechanical properties of the material under normal operating temperatures as a polymer and also as a ceramic once exposed to elevated temperatures. The optimization of additives used in the ceramifiable polymer composite was done by using a D-optimal mixture design of experiments (DoE) which was analyzed by multiple linear regression.
- Full Text:
- Date Issued: 2014