Modelling water quality : complexity versus simplicity
- Authors: Jacobs, Haden
- Date: 2017
- Subjects: Water quality management -- Mathematical models , Water quality -- Measurement , Water quality biological assessment
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/4754 , vital:20721
- Description: Water quality management makes use of water quality models as decision making tools. Water quality management decisions need to be informed by information that is as reliable as possible. There are many situations where observational data are limited and therefore models or simulation methods have a significant role to play in providing some information that can be used to guide management decisions. Water quality modelling is the use of mathematical equations and statistics to represent the processes affecting water quality in the natural environment. Water quality data are expensive and difficult to obtain. Nutrient sampling requires a technician to obtain ‘grab samples’ which need to be kept at low temperatures and analysed in a laboratory. The laboratory analyses of nutrients is expensive and time consuming. The data required by water quality models are seldom available as complete datasets of sufficient length. This is especially true for ungauged regions, either in small rural catchments or even major rivers in developing countries. Water quality modelling requires simulated or observed water quantity data as water quality is affected by water quantity. Both the water quality modelling and water quantity modelling require data to simulate the required processes. Data are necessary for both model structure as well as model set up for calibration and validation. This study aimed to investigate the simulation of water quality in a low order stream with limited observed data using a relatively complex as well as a much simpler water quality model, represented by QUAL2K and an in-house developed Mass Balance Nutrient (MBN) model, respectively. The two models differ greatly in the approach adopted for water quality modelling, with QUAL2K being an instream water quality fate model and the MBN model being a catchment scale model that links water quantity and quality. The MBN model uses hydrological routines to simulate those components of the hydrological cycle that are expected to differ with respect to their water quality signatures (low flows, high flows, etc.). Incremental flows are broken down into flow fractions, and nutrient signatures are assigned to fractions to represent catchment nutrient load input. A linear regression linked to an urban runoff model was used to simulate water quality entering the river system from failing municipal infrastructure, which was found to be a highly variable source of nutrients within the system. A simple algal model was adapted from CE-QUAL-W2 to simulate nutrient assimilation by benthic algae. QUAL2K, an instream water quality fate model, proved unsuitable for modelling diffuse sources for a wide range of conditions and was data intensive when compared to the data requirements of the MBN model. QUAL2K did not simulate water quality accurately over a wide range of flow conditions and was found to be more suitable to simulating point sources. The MBN model did not provide accurate results in terms of the simulation of individual daily water quality values; however, the general trends and frequency characteristics of the simulations were satisfactory. Despite some uncertainties, the MBN model remains useful for extending data for catchments with limited observed water quality data. The MBN model was found to be more suitable for South African conditions than QUAL2K, given the data requirements of each model and water quality and flow data available from the Department of Water and Sanitation. The MBN model was found to be particularly useful by providing frequency distributions of water quality loads or concentrations using minimal data that can be related to the risks of exceeding management thresholds.
- Full Text:
- Date Issued: 2017
Investigating integrated catchment management using a simple water quantity and quality model : a case study of the Crocodile River Catchment, South Africa
- Authors: Retief, Daniel Christoffel Hugo
- Date: 2015
- Subjects: Watersheds -- South Africa -- Krokodilrivier (Mpumalanga) , Integrated water development -- South Africa -- Krokodilrivier (Mpumalanga) , Water quality management -- South Africa -- Krokodilrivier (Mpumalanga) , Water-supply -- South Africa -- Krokodilrivier (Mpumalanga) , Water quality -- Measurement
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:6050 , http://hdl.handle.net/10962/d1017875
- Description: Internationally, water resources are facing increasing pressure due to over-exploitation and pollution. Integrated Water Resource Management (IWRM) has been accepted internationally as a paradigm for integrative and sustainable management of water resources. However, in practice, the implementation and success of IWRM policies has been hampered by the lack of availability of integrative decision support tools, especially within the context of limited resources and observed data. This is true for the Crocodile River Catchment (CRC), located within the Mpumalanga Province of South Africa. The catchment has been experiencing a decline in water quality as a result of the point source input of a cocktail of pollutants, which are discharged from industrial and municipal wastewater treatment plants, as well as diffuse source runoff and return flows from the extensive areas of irrigated agriculture and mining sites. The decline in water quality has profound implications for a range of stakeholders across the catchment including increased treatment costs and reduced crop yields. The combination of deteriorating water quality and the lack of understanding of the relationships between water quantity and quality for determining compliance/non-compliance in the CRC have resulted in collaboration between stakeholders, willing to work in a participatory and transparent manner to create an Integrated Water Quality Management Plan (IWQMP). This project aimed to model water quality, (combined water quality and quantity), to facilitate the IWQMP aiding in the understanding of the relationship between water quantity and quality in the CRC. A relatively simple water quality model (WQSAM) was used that receives inputs from established water quantity systems models, and was designed to be a water quality decision support tool for South African catchments. The model was applied to the CRC, achieving acceptable simulations of total dissolved solids (used as a surrogate for salinity) and nutrients (including orthophosphates, nitrates +nitrites and ammonium) for historical conditions. Validation results revealed that there is little consistency within the catchment, attributed to the non-stationary nature of water quality at many of the sites in the CRC. The analyses of the results using a number of representations including, seasonal load distributions, load duration curves and load flow plots, confirmed that the WQSAM model was able to capture the variability of relationships between water quantity and quality, provided that simulated hydrology was sufficiently accurate. The outputs produced by WQSAM was seen as useful for the CRC, with the Inkomati-Usuthu Catchment Management Agency (IUCMA) planning to operationalise the model in 2015. The ability of WQSAM to simulate water quality in data scarce catchments, with constituents that are appropriate for the needs of water resource management within South Africa, is highly beneficial.
- Full Text:
- Date Issued: 2015
The development of functionalized electrospun nanofibers for the control of pathogenic microorganisms in water.
- Authors: Kleyi, Phumelele Eldridge
- Date: 2014
- Subjects: Electrospinning , Nanofibers , Pathogenic microorganisms , Pathogenic microorganisms -- Detection , Drinking water -- Microbiology , Water quality -- Measurement , Imidazoles , Spectrum analysis , Anti-infective agents , Polymerization
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4497 , http://hdl.handle.net/10962/d1013134
- Description: The thesis presents the development of functionalized electrospun nylon 6 nanofibers for the eradication of pathogenic microorganisms in drinking water. Imidazole derivatives were synthesized as the antimicrobial agents and were characterized by means of NMR spectroscopy, IR spectroscopy, elemental analysis and X-ray crystallography. The first set of compounds (2-substituted N-alkylimidazoles) consisted of imidazole derivatives substituted with different alkyl groups (methyl, ethyl, propyl, butyl, heptyl, octyl, decyl and benzyl) at the 1-position and various functional groups [carboxaldehyde (CHO), alcohol (CH2OH) and carboxylic acid (COOH)] at the 2-position. It was observed that the antimicrobial activity of the compounds increased with increasing alkyl chain length and decreasing pKa of the 2-substituent. It was also observed that the antimicrobial activity was predominantly against a Gram-positive bacterial strains [Staphylococcus aureus (MIC = 5-160 μg/mL) and Bacillus subtilis subsp. spizizenii (MIC = 5-20 μg/mL)], with the latter being the more susceptible. However, the compounds displayed poor antimicrobial activity against Gram-negative bacterial strain, E. coli (MIC = 150- >2500 μg/mL) and did not show any activity against the yeast, C. albicans. The second set of compounds consisted of the silver(I) complexes containing 2-hydroxymethyl-N-alkylimidazoles. The complexes displayed a broad spectrum antimicrobial activity towards the microorganisms that were tested and their activity [E. coli (MIC = 5-40 μg/mL), S. aureus (MIC = 20-80 μg/mL), Bacillus subtilis subsp. spizizenii (MIC = 5-40 μg/mL) and C. albicans (MIC = 40-80 μg/mL)] increased with the alkyl chain length of the 2-hydroxymethyl-N-alkylimidazole. The third set of compounds consisted of the vinylimidazoles containing the vinyl group either at the 1-position or at the 4- or 5- position. The imidazoles with the vinyl group at the 4- or 5-position contained the alkyl group (decyl) at the 1-position. For the fabrication of the antimicrobial nanofibers, the first two sets of imidazole derivatives (2-substituted N-alkylimidazoles and silver(I) complexes) were incorporated into electrospun nylon 6 nanofibers while the third set (2-substituted vinylimidazoles) was immobilized onto electrospun nylon 6 nanofibers employing the graft polymerization method. The antimicrobial nylon nanofibers were characterized by IR spectroscopy and SEM-EDAX (EDS). The electrospun nylon 6 nanofibers incorporated with 2-substituted N-alkylimidazoles displayed moderate to excellent levels of growth reduction against S. aureus (73.2-99.8 percent). For the electrospun nylon 6 nanofibers incorporated with silver(I) complexes, the levels of growth reduction were >99.99 percent, after the antimicrobial activity evaluation using the shake flask method. Furthermore, the grafted electrospun nylon 6 nanofibers showed excellent levels of growth reduction for E. coli (99.94-99.99 percent) and S. aureus (99.93-99.99 percent). The reusability results indicated that the grafted electrospun nylon 6 nanofibers maintained the antibacterial activity until the third cycle of useage. The cytotoxicity studies showed that grafted electrospun nylon 6 nanofibers possess lower cytotoxic effects on Chang liver cells with IC50 values in the range 23.48-26.81 μg/mL. The thesis demonstrated that the development of antimicrobial electrospun nanofibers, with potential for the eradication of pathogenic microoganisms in water, could be accomplished by incorporation as well as immobilization strategies.
- Full Text:
- Date Issued: 2014
Handheld infrared CO2 gas detector
- Authors: Coetzee, George
- Date: 2000
- Subjects: Gas-detectors , Infrared detectors , Water quality -- Measurement
- Language: English
- Type: Thesis , Masters , MTech
- Identifier: vital:10807 , http://hdl.handle.net/10948/28 , Gas-detectors , Infrared detectors , Water quality -- Measurement
- Description: A handheld InfraRed (IR) Carbon Dioxide (CO2) gas detector was developed and used to carry out a study of water and urine samples in South Africa. The details of the model and the results of the study are discussed here. The overseas markets are not geared for the current South African conditions. Use is made of components that can be obtained locally. Imported components are very expensive and should an imported model be damaged, it has to be returned overseas to be repaired. As an illustration of this technology it was decided to perform research in water technology and then develope a handheld Infrared CO2 gas detector based prototype which would: highlight the benefits of using handheld IR CO2 gas detectors; be built locally; be powered by a 12 Volt supply; be very easy to maintain; and be cost effective. Experimental results on the accuracy and stability of the instrument formed part of this study. The IR CO2 Gas detector that was developed was used throughout the project as a prototype and testing vehicle for numerous designs. It proved to be superior to the current imported commercial instruments in terms of size, cost effectiveness and user friendliness. A further advantage of the instrument is its robustness.
- Full Text:
- Date Issued: 2000