Molecular detection and drug susceptibility of Mycobacterium tuberculosis complex in raw milk from a major dairy farm in the Nkonkobe region, Eastern Cape Province, South Africa
- Silaigwana, Blessing https://orcid.org/0000-0002-3324-1607
- Authors: Silaigwana, Blessing https://orcid.org/0000-0002-3324-1607
- Date: 2012
- Subjects: Mycobacterium tuberculosis , Drug resistance in microorganisms , Tuberculosis -- Pathogenesis
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10353/24239 , vital:62543
- Description: Mycobacterium tuberculosis complex (MTBC) organisms are the causative agents of tuberculosis in humans as well as animals. The study aimed to use molecular techniques for detection and drug susceptibility testing of MTBC in raw milk from cattle at a dairy farm in the Nkonkobe region of South Africa. Two hundred samples (100mL each) were collected and processed using the modified Petroff’s method. DNA was isolated using the Zymo Research bacterial DNA kit and amplified using the Seeplex® MTB Nested ACE assay. Drug susceptibility testing was performed using the Genotype® MTBDRplus assay. MTBC DNA was detected in 11 (6percent) of the samples tested. Resistance to both rifampicin and isoniazid was detected in 90.9percent of the positive samples. The most frequent rpoB mutations detected were H526Y (90percent), H526D (80percent), S531L (60percent) and D516V (20percent). No mutation was detected in the katG gene. All isoniazid resistant samples harboured mutations in the inhA gene. The most frequent (100percent) mutation conferring low level isoniazid resistance was the T8A substitution. The inhA mutations C15T, A16G and T8C were equally represented with 60percent frequency. A high prevalence of multi-drug resistance was noted in the Nkonkobe region. Therefore, the results of this study have clinico-veterinary and epidemiological significance and calls for further studies and necessary actions to delineate the situation. , Thesis (MSc) -- Faculty of Science and Agriculture, 2012
- Full Text:
- Date Issued: 2012
- Authors: Silaigwana, Blessing https://orcid.org/0000-0002-3324-1607
- Date: 2012
- Subjects: Mycobacterium tuberculosis , Drug resistance in microorganisms , Tuberculosis -- Pathogenesis
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10353/24239 , vital:62543
- Description: Mycobacterium tuberculosis complex (MTBC) organisms are the causative agents of tuberculosis in humans as well as animals. The study aimed to use molecular techniques for detection and drug susceptibility testing of MTBC in raw milk from cattle at a dairy farm in the Nkonkobe region of South Africa. Two hundred samples (100mL each) were collected and processed using the modified Petroff’s method. DNA was isolated using the Zymo Research bacterial DNA kit and amplified using the Seeplex® MTB Nested ACE assay. Drug susceptibility testing was performed using the Genotype® MTBDRplus assay. MTBC DNA was detected in 11 (6percent) of the samples tested. Resistance to both rifampicin and isoniazid was detected in 90.9percent of the positive samples. The most frequent rpoB mutations detected were H526Y (90percent), H526D (80percent), S531L (60percent) and D516V (20percent). No mutation was detected in the katG gene. All isoniazid resistant samples harboured mutations in the inhA gene. The most frequent (100percent) mutation conferring low level isoniazid resistance was the T8A substitution. The inhA mutations C15T, A16G and T8C were equally represented with 60percent frequency. A high prevalence of multi-drug resistance was noted in the Nkonkobe region. Therefore, the results of this study have clinico-veterinary and epidemiological significance and calls for further studies and necessary actions to delineate the situation. , Thesis (MSc) -- Faculty of Science and Agriculture, 2012
- Full Text:
- Date Issued: 2012
Phytochemical analysis and bioactivity of Garcinia Kola (Heckel) seeds on selected bacterial pathogens
- Seanego, Christinah Tshephisho
- Authors: Seanego, Christinah Tshephisho
- Date: 2012
- Subjects: Drug resistance in microorganisms , Garcinia , Antibiotics , Medicinal plants , Microbial sensitivity tests , Streptococcal infections , Streptococcus , Staphylococcus aureus infections , Salmonella typhimurium , Traditional medicine
- Language: English
- Type: Thesis , Masters , MSc (Microbiology)
- Identifier: vital:11259 , http://hdl.handle.net/10353/420 , Drug resistance in microorganisms , Garcinia , Antibiotics , Medicinal plants , Microbial sensitivity tests , Streptococcal infections , Streptococcus , Staphylococcus aureus infections , Salmonella typhimurium , Traditional medicine
- Description: Garcinia kola is one of the plants used in folklore remedies for the treatment of microbial infections. Bacterial resistance to commonly used antibiotics has necessitated the search for newer and alternative compounds for the treatment of drug resistant microbial infections. This study focuses on the bioactivity of G. kola seeds on Streptococcus pyogenes (ATCC 49399), Staphylococcus aureus (NCTC 6571), Plesiomonas Shigelloides (ATCC 51903) and Salmonella typhimurium (ATCC 13311), organisms which can cause illnesses from mild to severe with potentially fatal outcomes. The crude ethyl acetate, ethanol, methanol, acetone and aqueous extracts were screened by agar-well diffusion method and the activities of the extract were further determined by Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) assays. The inhibition zones ranged from 0 - 24 mm, while MIC and MBC of the extract ranged between 0.04 - 1.25 mg/mL and 0.081 - 2.5 mg/mL respectively. Chloroform/ Ethyl Acetate/ Formic acid (CEF) solvent system separated more active compounds followed by Ethyl Acetate/ Methanol/ Water (EMW) and Benzene/ Ethanol/ Ammonium Hydroxide (BEA). The extracts were fractionated by Thin Layer Chromatography (TLC). Bioautography was used to assess the activity of the possible classes of compounds present in the more active extracts. Column chromatography was used to purify the active compounds from the mixture while Gas Chromatography-Mass Spectrometry (GC-MS) was used to identify the phyto components of the fractions. The MIC of the fractions ranged between 0.0006 - 2.5 mg/mL. CEF 3 (F3), CEF 11 (F11) and CEF 12 (F12) revealed the presence of high levels fatty acids Linoleic acid, 1, 2-Benzenedicarboxylic acid and 2, 3-Dihydro-3, 5-dihydroxy-6-methyl, respectively. The results obtained from this study justify the use of this plant in traditional medicine and provide leads which could be further exploited for the development of new and potent antimicrobials.
- Full Text:
- Date Issued: 2012
- Authors: Seanego, Christinah Tshephisho
- Date: 2012
- Subjects: Drug resistance in microorganisms , Garcinia , Antibiotics , Medicinal plants , Microbial sensitivity tests , Streptococcal infections , Streptococcus , Staphylococcus aureus infections , Salmonella typhimurium , Traditional medicine
- Language: English
- Type: Thesis , Masters , MSc (Microbiology)
- Identifier: vital:11259 , http://hdl.handle.net/10353/420 , Drug resistance in microorganisms , Garcinia , Antibiotics , Medicinal plants , Microbial sensitivity tests , Streptococcal infections , Streptococcus , Staphylococcus aureus infections , Salmonella typhimurium , Traditional medicine
- Description: Garcinia kola is one of the plants used in folklore remedies for the treatment of microbial infections. Bacterial resistance to commonly used antibiotics has necessitated the search for newer and alternative compounds for the treatment of drug resistant microbial infections. This study focuses on the bioactivity of G. kola seeds on Streptococcus pyogenes (ATCC 49399), Staphylococcus aureus (NCTC 6571), Plesiomonas Shigelloides (ATCC 51903) and Salmonella typhimurium (ATCC 13311), organisms which can cause illnesses from mild to severe with potentially fatal outcomes. The crude ethyl acetate, ethanol, methanol, acetone and aqueous extracts were screened by agar-well diffusion method and the activities of the extract were further determined by Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) assays. The inhibition zones ranged from 0 - 24 mm, while MIC and MBC of the extract ranged between 0.04 - 1.25 mg/mL and 0.081 - 2.5 mg/mL respectively. Chloroform/ Ethyl Acetate/ Formic acid (CEF) solvent system separated more active compounds followed by Ethyl Acetate/ Methanol/ Water (EMW) and Benzene/ Ethanol/ Ammonium Hydroxide (BEA). The extracts were fractionated by Thin Layer Chromatography (TLC). Bioautography was used to assess the activity of the possible classes of compounds present in the more active extracts. Column chromatography was used to purify the active compounds from the mixture while Gas Chromatography-Mass Spectrometry (GC-MS) was used to identify the phyto components of the fractions. The MIC of the fractions ranged between 0.0006 - 2.5 mg/mL. CEF 3 (F3), CEF 11 (F11) and CEF 12 (F12) revealed the presence of high levels fatty acids Linoleic acid, 1, 2-Benzenedicarboxylic acid and 2, 3-Dihydro-3, 5-dihydroxy-6-methyl, respectively. The results obtained from this study justify the use of this plant in traditional medicine and provide leads which could be further exploited for the development of new and potent antimicrobials.
- Full Text:
- Date Issued: 2012
- «
- ‹
- 1
- ›
- »