Synthesis, characterisation and evaluation of functionalized Lignocelluloses-clay nanocomposites for organic pollutant removal from water
- Authors: Mafukidze, Donovan M
- Date: 2015
- Language: English
- Type: Thesis , Masters , MSc (Chemistry)
- Identifier: vital:11356 , http://hdl.handle.net/10353/d1021296
- Description: PMPSgLig-NaMMT nanocomposites were prepared from methacryloxypropyltrimethoxysilane (MPS), lignocellulose and montmorillonite clay. The potential enhancement of organic pollutant adsorption capabilities of PMPSgLig-NaMMT nanocomposite from water through functionalization was investigated. PMPSgLig-NaMMT was functionalized by esterification and etherification using different methods so as to increase the surface hydrophobicity of the material and hence improve its compatibility with the target pollutants. Specific chemical routes specially tailored for PMPSgLig-NaMMT were established for functionalization mostly based on the common esterification (Fischer esterification) and etherification (Williamson‟s etherification) reactions. In the functionalization methods, factors such as pH environment, nanocomposite composition, nature of functionalization moiety, and use of or absence of solvents and their variations were studied. FT-IR, XRD, SEM and TGA were used to characterize the synthesized and functionalized nanoadsorbents. The techniques showed successful functionalization via esterification and etherification methods albeit to different extents, with clear retention of the material‟s original structure though there were signs of degradation with some methods. Characterization was supported by adsorption studies to validate implications and draw conclusions. The use of 1,10-phenathroline as a model organic pollutant in water in the adsorption studies showed that adsorbents conformed to monolayer adsorption following pseudo-second order kinetics for adsorption of organic pollutants accurately represented. Most importantly the studies revealed the significant impact of the nanocomposite composition on the overall absorbent performance. Adsorption studies also showed that functionalization via esterification methods gave rise to better adsorbents.
- Full Text:
Synthesis, characterization & application of visible light responsive nitrogen doped Tio2 and copolymer-grafted asymmetric membranes with ozonolysis for water treatment
- Authors: Mungondori, Henry H
- Date: 2015
- Language: English
- Type: Thesis , Doctoral , PhD (Chemistry)
- Identifier: vital:11350 , http://hdl.handle.net/10353/d1020257
- Description: The use of titanium dioxide for the photo-catalytic removal of organic, inorganic, and microbial pollutants from natural water and wastewater has been considered a very promising technique. The aim of this study was to prepare nitrogen doped titanium dioxide, immobilize it on asymmetric polymeric membranes of poly (methacrylic acid) grafted onto poly (vinylidene difluoride) (PVDF) blended with poly (acrylonitrile) (PAN), and evaluate the photo-catalytic, antimicrobial, and antifouling properties of the membranes. Nitrogen doped titanium dioxide (N-TiO2) nano-particles were prepared by a low temperature sol gel synthesis technique. The modification of TiO2 with nitrogen allows photo-sensitization of the photo-catalyst towards visible light utilization. The N-TiO2 nano-particles were characterized by fourier transform infrared spectroscopy (FT-IR), scanning x-ray photoelectron spectroscopy (SXPS), X-ray diffraction analysis (XRD), diffuse reflectance spectroscopy (DRS), Brunauer Emmett Teller (BET) surface area analysis, and transmission electron microscopy (TEM). The characterizations revealed the presence of the expected functional groups and confirmed successful doping and that the product was visible light responsive. Novel poly (methacrylic acid) grafted onto poly (vinylidene difluoride)/ poly (acrylonitrile) (PMAA-g-PVDF/ PAN) asymmetric membranes were prepared by the dry-wet phase inversion technique. The poly (methacrylic acid) (PMAA) side chains where grafted onto an activated PVDF backbone by reversible addition fragmentation chain transfer (RAFT) polymerization. The photo-catalytic membranes were generated by blending N-TiO2 with the polymer solution before casting the membranes. The membranes were characterized by FT-IR, nuclear magnetic resonance spectroscopy (NMR), scanning electron microscopy (SEM), and thermo-gravimetric analysis (TGA). FT-IR and NMR analyses confirmed successful grafting of MAA chains onto PVDF while SEM confirmed the successful preparation of membranes with asymmetric structure. The efficacy of the photo-catalytic asymmetric membranes was evaluated on the removal of herbicides from synthetic water. Bentazon was easily degraded while atrazine and paraquat were recalcitrant and proved difficult to degrade. The best results were observed with 3 % N-TiO2-PMAA-g-PVDF/ PAN asymmetric membranes on the photo-degradation of bentazon, atrazine and paraquat in water. Significant enhancement in the photo-degradation of the three herbicides was observed when photo-catalytic degradation was coupled with ozonation. Liquid chromatography-mass spectrometry (LC-MS) analysis confirmed the presence of a degradation by-product during the photo-catalytic degradation of bentazon. The photo-catalytic membranes were also evaluated on the photo-catalytic reduction of heavy metals Pb2+ and Fe3+ in water, and the best results were obtained using 1 % N-TiO2-PMAA-g-PVDF/ PAN and 1 % N-TiO2-PAN asymmetric membranes. All prepared photo-catalytic membranes where capable of completely inactivating E. coli ATCC 8739 within 120 minutes of exposure and inactivation rate increased with increasing N-TiO2 photo-catalyst loading. However, there was an indication from the results obtained that N-TiO2 supported on PMAA-g-PVDF/ PAN showed a higher inactivation rate of E. coli ATCC 8739 compared to N-TiO2-PAN and N-TiO2-PVDF membranes. The 1 % N-TiO2-PMAA-g-PVDF/ PAN membranes gave the highest pure water flux (421.83 L/m2h). This increase (PVDF = 30.50 L/m2h, PAN = 73.85 L/m2h) in pure water flux is owedb to PMAA grafting as well as addition of N-TiO2. These modifications resulted in an increased membrane surface hydrophilicity, which promoted permeation of pure water through the membrane structure. A high bovine serum albumin (BSA) rejection (76.5 %) was noted and can be attributed to steric hindrance brought about by PMAA side chains which prevented the bulky BSA molecules from attaching to the membrane surface for PMAA-g-PVDF/ PAN membranes. However, the supporting porous sub-layer of an asymmetric membrane seemed to play a very important role in the overall permeability of a membrane. PVDF membranes are highly hydrophobic hence they gave a very low pure water flux.
- Full Text:
Ethanol production from lignocellulosic sugarcane leaves and tops
- Authors: Dodo, Charlie Marembu
- Date: 2014
- Subjects: Biomass energy , Ethanol as fuel , Lignocellulose
- Language: English
- Type: Thesis , Masters , MSc (Chemistry)
- Identifier: vital:11347 , http://hdl.handle.net/10353/d1019839 , Biomass energy , Ethanol as fuel , Lignocellulose
- Description: Various methods for the production of bioethanol using different feedstocks have been researched on. In most work on bioethanol synthesis from sugar cane, tops and leaves have been regarded as waste and generally removed and thrown away. In this work, lignocellulosic sugarcane leaves and tops were not discarded but instead used as biomass to evaluate their hydrolyzate content. The leaves and tops were hydrolysed using different methods, namely concentrated acid, dilute acid pre-treatment with subsequent enzyme hydrolysis and compared with a combination of oxidative alkali pretreatment and enzyme hydrolysis. Subsequent fermentation of the hydrolyzates into bioethanol was done using the yeast saccharomyces cerevisae. Acid hydrolysis has the problem of producing inhibitors, which have to be removed and this was done using overliming with calcium hydroxide and compared to sodium hydroxide neutralization. Oxidative alkali pre-treatment with enzyme hydrolysis gave the highest yields of fermentable sugars of 38% (g/g) using 7% (v/v) peroxide pre-treated biomass than 36% (g/g) for 5% (v/v) with the least inhibitors. Concentrated and dilute acid hydrolysis each gave yields of25% (g/g) and 22% (g/g) yields respectively although for acid a neutralization step was necessary and resulted in dilution. Alkaline neutralization of acid hydrolyzates using sodium hydroxide resulted in less dilution and loss of fermentable sugars as compared to overliming. Higher yields of bioethanol, 13.7 (g/l) were obtained from enzyme hydrolyzates than 6.9 (g/l) bioethanol from dilute acid hydrolyzates. There was more bioethanol yield 13.7 (g/l) after 72h of fermentation with the yeast than 7.0 (g/l) bioethanol after 24h. However, the longer fermentation period diminishes the value of the increase in yield by lowering the efficiency of the process.
- Full Text:
Preparation and characterisation of nanocomposites of biomass and montmorillonite clay for use as biofuels
- Authors: Nyamutswa, Lavern Tendayi
- Date: 2014
- Language: English
- Type: Thesis , Masters , MSc (Chemistry)
- Identifier: vital:11345 , http://hdl.handle.net/10353/d1019779
- Description: The aim of the study was to prepare composites of clay and biomass which burn longer than unmodified biomass. Montmorillonite clay was converted to mono-ionic clay by ion exchange with sodium using sodium chloride solution. The mono-ionic clay was organically modified with an organic surfactant, methyl triphenyl phosphonium bromide. Nanocomposites were then prepared by combining the modified forms of the clay with sawdust. The three forms of clay used for the formation of composites were unmodified montmorillonite, mono-ionic montmorillonite and organically modified montmorillonite. The solution blending method was used to make the nanocomposites. FT-IR and XRD analysis showed that organic surfactant increases the interlayer space of the clay since it is bulkier than the inorganic cations that are naturally present in the interlayer space of montmorillonite. The combination of clay and sawdust resulted in the formation of exfoliated nanocomposites as shown by the absence of peaks in the low 2 theta angle in the x-ray diffraction data of the nanocomposite. The nanocomposite which was made from sawdust and 1% organically modified clay showed the best results in terms of burning time and thermal stability, as well as giving a calorific value closest to unmodified sawdust and the least amount of residue.
- Full Text:
Synthesis, characterization & comparative evaluation of photo-catalytic & antimicrobial activity of Ag2O and TiO2 immobilized on nanofibres for treatment
- Authors: Gxumisa, Xoliswa
- Date: 2014
- Subjects: Pollution http://id.loc.gov/authorities/subjects/sh85104530 , Titanium dioxide http://id.loc.gov/authorities/subjects/sh85135627 , Photocatalysis http://id.loc.gov/authorities/subjects/sh93001301
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10353/19545 , vital:43138
- Description: Water is a very essential substance for the existence of organisms and the environment where it functions as a transport medium for valuable chemicals, minerals, nutrients and also as a reaction medium. However, the remarkable water properties are not just limited to the dissolution of biological valuable substances, but also to harmful entities during pollution. This has led to research in the improvement and development of new techniques for water treatment. In this study, titanium dioxide (TiO2) and silver oxide (Ag2O) were prepared using the sol gel process and precipitation method respectively. The TiO2 was doped using a sol gel process with carbon and nitrogen so as to reduce the band gap. TiO2/Ag2O, N-TiO2/Ag2O and C-TiO2/Ag2O composites were also prepared using a precipitation method. The average particle size of prepared TiO2, C-TiO2, N-TiO2, Ag2O, TiO2/Ag2O, N-TiO2/Ag2O and CTiO2/Ag2O was found to be 13nm, 7nm, 10nm, 23nm, 28nm, 24nm and 21nm respectively as measured by TEM analysis. The photo-catalysts, Ag2O and TiO2 and their composites were immobilized on stabilized nanofibres using the electrospinning process to allow subsequent separation and reconciliation of the photo-catalyst after use in water treatment. The photocatalytic and antimicrobial activities of photo-catalysts were also evaluated using water contaminated with phenol red dye and Escherichia coli. The prepared materials were characterized by XRD, TEM, HRSEM, DRS, EDX, FT-IR, and TGA. Carbon was found to be more effective as a dopant than nitrogen. It reduced the band gap by 0.4 while nitrogen doping showed a reduction in band gap of 0.2 compared to undoped titanium dioxide. The doped TiO2 exhibited higher photo-catalytic and antimicrobial activity than the undoped TiO2. Introduction of Ag2O allowed utilization of visible light by the TiO2- Ag2O nano-composite leading to an improved rate of photo-degradation of phenol red and inactivation of E coli. Photo-catalytic properties showed that carbon doped materials have a higher photo-catalytic activity than nitrogen doped materials, while for antimicrobial v properties it is vice-versa. The immobilization of photo-catalysts on support material made it less effective towards the degradation of phenol red. The rate of photo-oxidation of phenol red was three times faster using powder TiO2 compared to immobilized TiO2. Therefore, this study suggests that photo-catalysis can be used as an effective method for water disinfection and production of potable and pathogen free drinking water even though better methods of immobilization should be sought. , Thesis (MSc) (Chemistry) -- University of Fort Hare, 2014
- Full Text:
Development of a visible light active, photo-catalytic and antimicrobial nanocomposite of titanium dioxide and silicon dioxide for water treatment
- Authors: Mungondori, Henry Heroe
- Date: 2012
- Subjects: Titanium dioxide , Silica , Catalysis , Nanocomposites (Materials) , Water -- Purification
- Language: English
- Type: Thesis , Masters , MSc (Chemistry)
- Identifier: vital:11335 , http://hdl.handle.net/10353/471 , Titanium dioxide , Silica , Catalysis , Nanocomposites (Materials) , Water -- Purification
- Description: The aim of this study was to prepare composite materials based on titanium dioxide (TiO2) and silicon dioxide (SiO2), and to evaluate their photo-catalytic and antimicrobial properties. Carbon and nitrogen doped TiO2nano-particles were prepared via a sol gel synthesis, which is a simple hydrolysis and condensation technique. In situ doping was carried out using glucose and urea as carbon and nitrogen sources respectively. Doping increased the spectral response of titanium dioxide photo-catalyst, allowing it to utilise the visible region which is much wider than the UV region (about 40 % of the solar spectrum), thus making it a more efficient photo-catalyst. The carbon and nitrogen doped TiO2-SiO2nano-particles were immobilized on glass support material to allow for easy separation of the spent photo-catalyst after the photo-degradation process. Tetraethyl orthosilicate (TEOS) was employed as both a binder and precursor for silicon dioxide. A mixture of TiO2 and TEOS in a 1:1 ratio was allowed to polymerize on a glass support which had been treated with hydrofluoric acid to introduce OH groups. The prepared photo-catalytic material was characterized by FT-IR, XRD, DRS, TEM, EDX, and BET analyses. Carbon was found to be more effective as a dopant than nitrogen. It brought about a band gap reduction of 0.30 eV and a BET surface area of 95.4 m2g-1 on the photo-catalyst as compared to a gap reduction of 0.2 eV and surface area of 52.2 m2g-1 for nitrogen doped TiO2. On the other hand, introduction of SiO2 allowed utilization of visible light by the TiO2-SiO2 nano-composite leading to an improved rate of photo-degradation of both methyl orange and phenol red. However, the immobilization of TiO2 on support material made it less effective towards inactivation of E. coli ATCC 25922 bacterial cells when compared to powdered TiO2 which was able to inactivate about 98 % of the bacterial cells within an hour of treatment.
- Full Text:
Photocatalytic activity and antibacterial properties of Ag/N-doped TiO2 nanoparticles on PVAE-CS nanofibre support
- Authors: Ocwelwang, Atsile Rosy
- Date: 2012
- Subjects: Nanocomposites (Materials) , Nanofibers , Electrospinning
- Language: English
- Type: Thesis , Masters , MSc (Chemistry)
- Identifier: vital:11337 , http://hdl.handle.net/10353/d1006794 , Nanocomposites (Materials) , Nanofibers , Electrospinning
- Description: Lack of potable water is one of the major challenges that the world faces currently and the effects of this are mainly experienced by people in developing countries. This has therefore propelled research in advanced oxidation technologies AOTs to improve the current water treatment methods using cost effective, non toxic and efficient treatment methods. Hence, in this study the sol-gel synthesis method was used to prepare TiO2 nanoparticles that were photocatalytically active under UV and visible solar light as well as possessing antibacterial properties. Silver and nitrogen doping was carried out to extend the optical absorption of TiO2. For easy removal and reuse of the photocatalyst the nanoparticles were immobilized on chitosan and poly (vinyl-alcohol-co-ethylene) using the electrospining technique. The synthesized nanomaterials were characterized by FTIR, XRD, SEM/EDS, TEM, DRS, and TGA. FTIR and EDS analysis confirmed the formation and composition of TiO2 nanopowders for the doped and undoped nanoparticles. XRD analysis showed that the anatase phase was the dominant crystalline phase of the synthesized nanopowders. SEM and TEM respectively illustrated the distribution and size of the electrospun nanofibers and the nanoparticles of TiO2. DRS results showed that there was a significant shift in the absorption band edge and wavelength of Ag-TiO2 to 397 nm, followed by N-TiO2 at 396 nm compared to the commercial titania which was at 359 nm. The photocatalytic activities and antibacterial properties of these materials were tested on methylene blue dye and E.coli microorganism respectively. Ag-TiO2 immobilized on nanofibers of chitosan and PVAE had the highest photocatalytic activity compared to N-TiO2. Similar results were observed when the biocide properties of these materials were tested on E. coli.
- Full Text:
Preparation and evaluation of Lignocellulose-Montmorillonite nanocomposites for the adsorption of some heavy metals and organic dyes from aqueous solution
- Authors: Bunhu, Tavengwa
- Date: 2011
- Subjects: Lignocellulose , Lignocellulose -- Biodegradation , Water -- Purification , Adsorption , Separation (Technology) , Dyes and dyeing , Montmorillonite
- Language: English
- Type: Thesis , Doctoral , PhD (Chemistry)
- Identifier: vital:11333 , http://hdl.handle.net/10353/535 , Lignocellulose , Lignocellulose -- Biodegradation , Water -- Purification , Adsorption , Separation (Technology) , Dyes and dyeing , Montmorillonite
- Description: The need to reduce the cost of adsorption technology has led scientists to explore the use of many low cost adsorbents especially those from renewable resources. Lignocellulose and montmorillonite clay have been identified as potentially low cost and efficient adsorbent materials for the removal of toxic heavy metals and organic substances from contaminated water. Montmorillonite clay has good adsorption properties and the potential for ion exchange. Lignocellulose possesses many hydroxyl, carbonyl and phenyl groups and therefore, both montmorillonite and lignocellulose are good candidates for the development of effective and low cost adsorbents in water treatment and purification. The aim of this study was to prepare composite materials based on lignocellulose and montmorillonite clay and subsequently evaluate their efficacy as adsorbents for heavy metal species and organic pollutants in aqueous solution. It was also important to assess the adsorption properties of the modified individual (uncombined) lignocellulose and montmorillonite. Lignocellulose and sodium-exchanged montmorillonite (NaMMT) clay were each separately modified with methyl methacrylate (MMA), methacrylic acid (MAA) and methacryloxypropyl trimethoxysilane (MPS) and used as adsorbents for the removal of heavy metals and dyes from aqueous solution. The lignocellulose and NaMMT were modified with MMA, MAA and MPS through free radical graft polymerisation and/or condensation reactions. NaMMT was also modified through Al-pillaring to give AlpMMT. The materials were characterised by fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and small angle X-ray scattering (SAXS) and characterisation results showed that the modification of the montmorillonite with MAA, MMA and MPS was successful. The modified lignocellulose and montmorillonite materials were evaluated for the adsorption of heavy metal ions (Cd2+ and Pb2+) from aqueous solution by the batch method. The adsorption isotherms and kinetics of both Cd2+ and Pb2+ onto the NaMMT clay, AlpMMT and lignocellulose materials are presented. The Langmuir isotherm was found to be the best fit for the adsorption of both heavy metals onto all the adsorbents. AlpMMT showed very poor uptake for heavy metals (both Cd2+ and Pb2+). PMMAgMMT, PMAAgMMT, PMAAgLig and PMPSgLig showed improved adsorption for both heavy metals. The mechanism of heavy metal adsorption onto the adsorbents was best represented by the pseudo second-order kinetic model. PMPSgLig, NaMMT and AlpMMT showed relatively high adsorption capacities for methyl orange, while the adsorption of neutral red was comparable for almost all the adsorbents. Neither the Langmuir model nor the Freundlich model was found to v adequately describe the adsorption process of dyes onto all the adsorbents. The pseudo second-order model was found to be the best fit to describe the adsorption mechanism of both dyes onto all the adsorbents. The modification of lignocellulose and montmorillonite with suitable organic groups can potentially produce highly effective and efficient adsorbents for the removal of both heavy metals and dyes from contaminated water. Novel adsorbent composite materials based on lignocellulose and montmorillonite clay (NaMMT) were also prepared and evaluated for the removal of pollutants (dyes and heavy metals) from aqueous solution. The lignocellulose-montmorillonite composites were prepared by in situ intercalative polymerisation, using methyl methacrylate, methacrylic acid and methacryloxypropyl trimethoxysilane (MPS) as coupling agents. The composite materials were characterised by FTIR, TGA, TEM and SAXS. SAXS diffractograms showed intercalated nanocomposites of PMMAgLig-NaMMT and PMAAgLig-NaMMT, whereas PMPSgLig-NaMMT showed a phase-separated composite and the same results were confirmed by TEM. The lignocellulose-montmorillonite composites were assessed for their adsorption properties for heavy metal ions (Cd2+ and Pb2+) and dyes (methyl orange and neutral red) from aqueous solution. Among these composite materials, only PMAAgLig-NaMMT showed a marked increase in the uptake of both Cd2+ and Pb2+ relative to lignocellulose and montmorillonite when used independently. The adsorption data were fitted to the Langmuir and Freundlich isotherms, as well as to the pseudo first-order and pseudo second-order kinetic models. The data were best described by the Langmuir isotherm and the pseudo second-order kinetic model. On the adsorption of dyes, only PMPSgLig-NaMMT showed enhanced adsorption of methyl orange (MetO) compared with lignocellulose and montmorillonite separately. The enhanced adsorption was attributed to the synergistic adsorption due to the presence of MPS, lignocellulose and NaMMT. Competitive adsorption studies were carried out from binary mixtures of MetO and Cd2+ or Pb2+ in aqueous solution. The adsorption process of MetO onto the composite material was found to follow the Freundlich adsorption model, while the mechanism of adsorption followed both the pseudo first-order and pseudo second-order models. This particular composite can be used for the simultaneous adsorption of both heavy metals and organic dyes from contaminated water. The adsorption of neutral red to the composite materials was comparable and the pseudo second-order kinetic model best described the adsorption mechanism.
- Full Text:
Preparation of photocatalytic TiO₂ nanoparticles immobilized on carbon nanofibres for water purification
- Authors: Nyamukamba, Pardon
- Date: 2011
- Subjects: Water -- Purification , Titanium alloys -- Industrial applications , Titanium , Nanoparticles , Drinking water -- Purification , Drinking water -- Contamination
- Language: English
- Type: Thesis , Masters , MSc (Chemistry)
- Identifier: vital:11330 , http://hdl.handle.net/10353/367 , Water -- Purification , Titanium alloys -- Industrial applications , Titanium , Nanoparticles , Drinking water -- Purification , Drinking water -- Contamination
- Description: Titanium dioxide nanoparticles were prepared using the sol-gel process. The effect of temperature and precursor concentration on particle size was investigated. The optimum conditions were then used to prepare carbon and nitrogen doped titanium dioxide (TiO2) nanoparticles. Doping was done to reduce band gap of the nanoparticles in order to utilize visible light in the photocatalytic degradation of organic compounds. A significant shift of the absorption edge to a longer wavelength (lower energy) from 420 nm to 456 nm and 420 nm to 428 nm was observed for the carbon doped and nitrogen doped TiO2 respectively. In this study, the prepared TiO2 photocatalyst was immobilized on carbon nanofibres to allow isolation and reuse of catalyst. The photocatalytic activity of the catalyst was tested using methyl orange as a model pollutant and was based on the decolourization of the dye as it was degraded. The doped TiO2 exhibited higher photocatalytic activity than the undoped TiO2. The materials prepared were characterized by XRD, TEM, SEM, FT-IR, DSC and TGA while the doped TiO2 was characterized by XPS, ESR and Raman Spectroscopy.
- Full Text: