A missing link in the estuarine nitrogen cycle?: coupled nitrification-denitrification mediated by suspended particulate matter
- Zhu, Weijing, Wang, Cheng, Hill, Jaclyn M, He, Yangyang, Tao, Bangyi, Mao, Zhihua, Wu, Weixiang
- Authors: Zhu, Weijing , Wang, Cheng , Hill, Jaclyn M , He, Yangyang , Tao, Bangyi , Mao, Zhihua , Wu, Weixiang
- Date: 2018
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/68368 , vital:29244 , https://0-doi.org.wam.seals.ac.za/10.1038/s41598-018-20688-4
- Description: In estuarine and coastal ecosystems, the majority of previous studies have considered coupled nitrification-denitrification (CND) processes to be exclusively sediment based, with little focus onsuspended particulate matter (SPM) in the water column. Here, we present evidence of CND processes in the water column of Hangzhou Bay, one of the largest macrotidal embayments in the world.
- Full Text:
- Date Issued: 2018
- Authors: Zhu, Weijing , Wang, Cheng , Hill, Jaclyn M , He, Yangyang , Tao, Bangyi , Mao, Zhihua , Wu, Weixiang
- Date: 2018
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/68368 , vital:29244 , https://0-doi.org.wam.seals.ac.za/10.1038/s41598-018-20688-4
- Description: In estuarine and coastal ecosystems, the majority of previous studies have considered coupled nitrification-denitrification (CND) processes to be exclusively sediment based, with little focus onsuspended particulate matter (SPM) in the water column. Here, we present evidence of CND processes in the water column of Hangzhou Bay, one of the largest macrotidal embayments in the world.
- Full Text:
- Date Issued: 2018
Contrasting responses in the niches of two coral reef herbivores along a gradient of habitat disturbance in the Spermonde Archipelago, Indonesia
- Plass-Johnson, Jeremiah G, Bednarz, Vanessa N, Hill, Jaclyn M, Jompa, Jamaluddin, Ferse, Sebastian C A, Teichberg, Mirta
- Authors: Plass-Johnson, Jeremiah G , Bednarz, Vanessa N , Hill, Jaclyn M , Jompa, Jamaluddin , Ferse, Sebastian C A , Teichberg, Mirta
- Date: 2018
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/69135 , vital:29398 , hhttps://doi.org/10.3389/fmars.2018.00032
- Description: Habitat modification of coral reefs is becoming increasingly common due to increases in coastal urban populations. Coral reef fish are highly dependent on benthic habitat; however, information on species-specific responses to habitat change, in particular with regard to trophic strategies, remains scarce. This study identifies variation in the trophic niches of two herbivorous coral reef fishes with contrasting trophic strategies, using Stable Isotopes Bayesian Ellipses in R, along a spatial gradient of changing coral reef habitats. In the parrotfish Chlorurus bleekeri, a roving consumer, the range of δ15N and δ13C and their niche area displayed significant relationships with the amount of rubble in the habitat. In contrast, the farming damselfish, Dischistodus prosopotaenia, showed a narrow range of both δ15N and δ13C, displaying little change in niche parameters among sites. This may indicate that parrotfish vary their feeding according to habitat, while the damselfish continue to maintain their turf and invertebrate resources. Assessing isotopic niches may help to better understand the specific trophic responses to change in the environment. Furthermore, the use of isotopic niches underlines the utility of stable isotopes in studying the potential impacts of environmental change on feeding ecology.
- Full Text:
- Date Issued: 2018
- Authors: Plass-Johnson, Jeremiah G , Bednarz, Vanessa N , Hill, Jaclyn M , Jompa, Jamaluddin , Ferse, Sebastian C A , Teichberg, Mirta
- Date: 2018
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/69135 , vital:29398 , hhttps://doi.org/10.3389/fmars.2018.00032
- Description: Habitat modification of coral reefs is becoming increasingly common due to increases in coastal urban populations. Coral reef fish are highly dependent on benthic habitat; however, information on species-specific responses to habitat change, in particular with regard to trophic strategies, remains scarce. This study identifies variation in the trophic niches of two herbivorous coral reef fishes with contrasting trophic strategies, using Stable Isotopes Bayesian Ellipses in R, along a spatial gradient of changing coral reef habitats. In the parrotfish Chlorurus bleekeri, a roving consumer, the range of δ15N and δ13C and their niche area displayed significant relationships with the amount of rubble in the habitat. In contrast, the farming damselfish, Dischistodus prosopotaenia, showed a narrow range of both δ15N and δ13C, displaying little change in niche parameters among sites. This may indicate that parrotfish vary their feeding according to habitat, while the damselfish continue to maintain their turf and invertebrate resources. Assessing isotopic niches may help to better understand the specific trophic responses to change in the environment. Furthermore, the use of isotopic niches underlines the utility of stable isotopes in studying the potential impacts of environmental change on feeding ecology.
- Full Text:
- Date Issued: 2018
The contributions of biological control to reduced plant size and biomass of water hyacinth populations
- Jones, Roy W, Hill, Jaclyn M, Coetzee, Julie A, Hill, Martin P
- Authors: Jones, Roy W , Hill, Jaclyn M , Coetzee, Julie A , Hill, Martin P
- Date: 2018
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/68803 , vital:29326 , https://0-doi.org.wam.seals.ac.za/10.1007/s10750-017-3413-y
- Description: Water hyacinth is invasive in many countries, where it reduces aquatic biodiversity and limits water resource utilisation. Biological control of water hyacinth has been successful in South Africa, but has suffered from a lack of empirical data to prove causation. Insect exclusion trials were conducted to quantify the contribution of Neochetina eichhorniae and N. bruchi to the integrated control of water hyacinth on the Nseleni River, South Africa. Insecticide was not expected to induce phytotoxicity, but would prevent weevil damage in water hyacinth plants; and weevil herbivory was predicted to reduce plant petiole length, and above/below surface biomass. Results showed that insecticide had no phytotoxic effects and excluded weevils for 3 weeks, providing a baseline for field applications. Biological control on the Nseleni River directly affected water hyacinth biomass and petiole length, but did not affect plant cover. Plants subject to weevil herbivory demonstrated reductions in above and below surface biomass and had shorter petioles compared to insect-free plants. Dead biomass was also higher in biological control treatments. Biological control strongly affects plant size, biomass and vigour; however, further integrated control is required to facilitate reduction in mat cover, which is the goalpost for successful control of floating aquatic plants.
- Full Text: false
- Date Issued: 2018
- Authors: Jones, Roy W , Hill, Jaclyn M , Coetzee, Julie A , Hill, Martin P
- Date: 2018
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/68803 , vital:29326 , https://0-doi.org.wam.seals.ac.za/10.1007/s10750-017-3413-y
- Description: Water hyacinth is invasive in many countries, where it reduces aquatic biodiversity and limits water resource utilisation. Biological control of water hyacinth has been successful in South Africa, but has suffered from a lack of empirical data to prove causation. Insect exclusion trials were conducted to quantify the contribution of Neochetina eichhorniae and N. bruchi to the integrated control of water hyacinth on the Nseleni River, South Africa. Insecticide was not expected to induce phytotoxicity, but would prevent weevil damage in water hyacinth plants; and weevil herbivory was predicted to reduce plant petiole length, and above/below surface biomass. Results showed that insecticide had no phytotoxic effects and excluded weevils for 3 weeks, providing a baseline for field applications. Biological control on the Nseleni River directly affected water hyacinth biomass and petiole length, but did not affect plant cover. Plants subject to weevil herbivory demonstrated reductions in above and below surface biomass and had shorter petioles compared to insect-free plants. Dead biomass was also higher in biological control treatments. Biological control strongly affects plant size, biomass and vigour; however, further integrated control is required to facilitate reduction in mat cover, which is the goalpost for successful control of floating aquatic plants.
- Full Text: false
- Date Issued: 2018
- «
- ‹
- 1
- ›
- »