Biological control of Salvinia molesta in South Africa revisited
- Martin, Grant D, Coetzee, Julie A, Weyl, Philip S R, Parkinson, Matthew C, Hill, Martin P
- Authors: Martin, Grant D , Coetzee, Julie A , Weyl, Philip S R , Parkinson, Matthew C , Hill, Martin P
- Date: 2018
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/103878 , vital:32318 , https://doi.org/10.1016/j.biocontrol.2018.06.011
- Description: The aquatic weed Salvinia molesta D.S. Mitch. (Salviniaceae) was first recorded in South Africa in the early 1900s, and by the 1960s was regarded as one of South Africa’s worst aquatic weeds. Following the release of the weevil, Cyrtobagous salviniae Calder and Sands (Coleoptera: Curculionidae) in 1985, the weed is now considered under successful biological control. However, the post-release evaluation of this biological control programme has been ad hoc, therefore, to assess the efficacy of the agent, annual quantitative surveys of South African freshwater systems have been undertaken since 2008. Over the last ten years, of the 57 S. molesta sites visited annually in South Africa, the weevil has established at all of them. Eighteen sites are under successful biological control, where the weed no longer poses a threat to the system and 19 are under substantial biological control, where biological control has reduced the impact of the weed. Since 2008, the average percentage weed cover at sites has declined significantly from 51–100% cover to 0–5% cover in 2017 (R2 = 0.78; P < 0.05). Observations of site-specific characteristics suggest that biological control is most effective at small sites and more difficult at larger and shaded sites. Our findings show that S. molesta remains under good biological control in South Africa, however, some sites require intermittent strategic management, such as augmentative releases of C. salviniae.
- Full Text:
- Date Issued: 2018
- Authors: Martin, Grant D , Coetzee, Julie A , Weyl, Philip S R , Parkinson, Matthew C , Hill, Martin P
- Date: 2018
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/103878 , vital:32318 , https://doi.org/10.1016/j.biocontrol.2018.06.011
- Description: The aquatic weed Salvinia molesta D.S. Mitch. (Salviniaceae) was first recorded in South Africa in the early 1900s, and by the 1960s was regarded as one of South Africa’s worst aquatic weeds. Following the release of the weevil, Cyrtobagous salviniae Calder and Sands (Coleoptera: Curculionidae) in 1985, the weed is now considered under successful biological control. However, the post-release evaluation of this biological control programme has been ad hoc, therefore, to assess the efficacy of the agent, annual quantitative surveys of South African freshwater systems have been undertaken since 2008. Over the last ten years, of the 57 S. molesta sites visited annually in South Africa, the weevil has established at all of them. Eighteen sites are under successful biological control, where the weed no longer poses a threat to the system and 19 are under substantial biological control, where biological control has reduced the impact of the weed. Since 2008, the average percentage weed cover at sites has declined significantly from 51–100% cover to 0–5% cover in 2017 (R2 = 0.78; P < 0.05). Observations of site-specific characteristics suggest that biological control is most effective at small sites and more difficult at larger and shaded sites. Our findings show that S. molesta remains under good biological control in South Africa, however, some sites require intermittent strategic management, such as augmentative releases of C. salviniae.
- Full Text:
- Date Issued: 2018
Development of a Postharvest Cold Treatment for Cryptophlebia peltastica (Lepidoptera: Tortricidae) for Export of Litchis From South Africa
- Moore, Sean D, Kirkman, Wayne, Peyper, Mellissa, Thackeray, Sean R, Marsberg, Tamryn, Albertyn, Sonnica, Hill, Martin P
- Authors: Moore, Sean D , Kirkman, Wayne , Peyper, Mellissa , Thackeray, Sean R , Marsberg, Tamryn , Albertyn, Sonnica , Hill, Martin P
- Date: 2018
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/423729 , vital:72089 , xlink:href="https://doi.org/10.1093/jee/toy287"
- Description: The litchi moth, Cryptophlebia peltastica (Meyrick) (Lepidoptera: Tortricidae), is endemic to sub-Saharan Africa and certain Indian Ocean islands. It is an important pest of litchis and to a lesser extent macadamias. Litchis are exported to certain markets that consider C. peltastica as a phytosanitary pest. Consequently, an effective postharvest phytosanitary treatment is required. This study sought to develop a cold disinfestation treatment for this purpose. First, it was established that the fifth instar was the most cold-tolerant larval stage, as it was the only instar for which there was still some survival after 12 d at 1°C. It was then determined that cold treatment trials could be conducted in artificial diet, as there was no survival of fifth instar C. peltastica in litchis after only 9 d at 1°C, whereas it took 15 d at this temperature before no survival of fifth instar C. peltastica was recorded in artificial diet. Consequently, cold susceptibility of fifth instar C. peltastica and the most cold-tolerant larval stages (fourth and fifth instar) of false codling moth, Thaumatotibia leucotreta (Meyrick) (Lepidoptera: Tortricidae), were compared in artificial diet. There was no survival of C. peltastica after 13 d at 1°C, whereas this was only so for T. leucotreta after 16 d. Consequently, it can be concluded that any cold treatment that has been proven effective against T. leucotreta would be as effective against C. peltastica. Finally, it was confirmed that the cold susceptibility of T. leucotreta in artificial diet did not overestimate the effect of cold on T. leucotreta larvae in litchis.
- Full Text:
- Date Issued: 2018
- Authors: Moore, Sean D , Kirkman, Wayne , Peyper, Mellissa , Thackeray, Sean R , Marsberg, Tamryn , Albertyn, Sonnica , Hill, Martin P
- Date: 2018
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/423729 , vital:72089 , xlink:href="https://doi.org/10.1093/jee/toy287"
- Description: The litchi moth, Cryptophlebia peltastica (Meyrick) (Lepidoptera: Tortricidae), is endemic to sub-Saharan Africa and certain Indian Ocean islands. It is an important pest of litchis and to a lesser extent macadamias. Litchis are exported to certain markets that consider C. peltastica as a phytosanitary pest. Consequently, an effective postharvest phytosanitary treatment is required. This study sought to develop a cold disinfestation treatment for this purpose. First, it was established that the fifth instar was the most cold-tolerant larval stage, as it was the only instar for which there was still some survival after 12 d at 1°C. It was then determined that cold treatment trials could be conducted in artificial diet, as there was no survival of fifth instar C. peltastica in litchis after only 9 d at 1°C, whereas it took 15 d at this temperature before no survival of fifth instar C. peltastica was recorded in artificial diet. Consequently, cold susceptibility of fifth instar C. peltastica and the most cold-tolerant larval stages (fourth and fifth instar) of false codling moth, Thaumatotibia leucotreta (Meyrick) (Lepidoptera: Tortricidae), were compared in artificial diet. There was no survival of C. peltastica after 13 d at 1°C, whereas this was only so for T. leucotreta after 16 d. Consequently, it can be concluded that any cold treatment that has been proven effective against T. leucotreta would be as effective against C. peltastica. Finally, it was confirmed that the cold susceptibility of T. leucotreta in artificial diet did not overestimate the effect of cold on T. leucotreta larvae in litchis.
- Full Text:
- Date Issued: 2018
Developmental and reproductive performance of a specialist herbivore depend on seasonality of, and light conditions experienced by, the host plant
- Zachariades, Uyi O O,, Heshula, Lelethu U P, Hill, Martin P
- Authors: Zachariades, Uyi O O, , Heshula, Lelethu U P , Hill, Martin P
- Date: 2018
- Language: English
- Type: article , text
- Identifier: http://hdl.handle.net/10962/59845 , vital:27667 , https://doi.org/10.1371/journal.pone.0190700
- Description: Host plant phenology (as influenced by seasonality) and light-mediated changes in the phenotypic and phytochemical properties of leaves have been hypothesised to equivocally influence insect herbivore performance. Here, we examined the effects of seasonality, through host plant phenology (late growth-season = autumn vs flowering-season = winter) and light environment (shade vs full-sun habitat) on the leaf characteristics of the invasive alien plant, Chromolaena odorata. In addition, the performance of a specialist folivore, Pareuchaetes insulata, feeding on leaves obtained from both shaded and full-sun habitats during autumn and winter, was evaluated over two generations. Foliar nitrogen and magnesium contents were generally higher in shaded plants with much higher levels during winter. Leaf water content was higher in shaded and in autumn plants. Total non-structural carbohydrate (TNC) and phosphorus contents did not differ as a function of season, but were higher in shaded foliage compared to full-sun leaves. Leaf toughness was noticeably higher on plants growing in full-sun during winter. With the exception of shaded leaves in autumn that supported the best performance [fastest development, heaviest pupal mass, and highest growth rate and Host Suitability Index (HSI) score], full-sun foliage in autumn surprisingly also supported an improved performance of the moth compared to shaded or full-sun leaves in winter. Our findings suggest that shaded and autumn foliage are nutritionally more suitable for the growth and reproduction of P. insulata. However, the heavier pupal mass, increased number of eggs and higher HSI score in individuals that fed on full-sun foliage in autumn compared to their counterparts that fed on shaded or full-sun foliage in winter suggest that full-sun foliage during autumn is also a suitable food source for larvae of the moth. In sum, our study demonstrates that seasonal and light-modulated changes in leaf characteristics can affect insect folivore performance in ways that are not linear.
- Full Text:
- Date Issued: 2018
- Authors: Zachariades, Uyi O O, , Heshula, Lelethu U P , Hill, Martin P
- Date: 2018
- Language: English
- Type: article , text
- Identifier: http://hdl.handle.net/10962/59845 , vital:27667 , https://doi.org/10.1371/journal.pone.0190700
- Description: Host plant phenology (as influenced by seasonality) and light-mediated changes in the phenotypic and phytochemical properties of leaves have been hypothesised to equivocally influence insect herbivore performance. Here, we examined the effects of seasonality, through host plant phenology (late growth-season = autumn vs flowering-season = winter) and light environment (shade vs full-sun habitat) on the leaf characteristics of the invasive alien plant, Chromolaena odorata. In addition, the performance of a specialist folivore, Pareuchaetes insulata, feeding on leaves obtained from both shaded and full-sun habitats during autumn and winter, was evaluated over two generations. Foliar nitrogen and magnesium contents were generally higher in shaded plants with much higher levels during winter. Leaf water content was higher in shaded and in autumn plants. Total non-structural carbohydrate (TNC) and phosphorus contents did not differ as a function of season, but were higher in shaded foliage compared to full-sun leaves. Leaf toughness was noticeably higher on plants growing in full-sun during winter. With the exception of shaded leaves in autumn that supported the best performance [fastest development, heaviest pupal mass, and highest growth rate and Host Suitability Index (HSI) score], full-sun foliage in autumn surprisingly also supported an improved performance of the moth compared to shaded or full-sun leaves in winter. Our findings suggest that shaded and autumn foliage are nutritionally more suitable for the growth and reproduction of P. insulata. However, the heavier pupal mass, increased number of eggs and higher HSI score in individuals that fed on full-sun foliage in autumn compared to their counterparts that fed on shaded or full-sun foliage in winter suggest that full-sun foliage during autumn is also a suitable food source for larvae of the moth. In sum, our study demonstrates that seasonal and light-modulated changes in leaf characteristics can affect insect folivore performance in ways that are not linear.
- Full Text:
- Date Issued: 2018
Evidence for a new regime shift between floating and submerged invasive plant dominance in South Africa
- Strange, Emily F, Hill, Martin P, Coetzee, Julie A
- Authors: Strange, Emily F , Hill, Martin P , Coetzee, Julie A
- Date: 2018
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/423993 , vital:72114 , xlink:href="https://doi.org/10.1007/s10750-018-3506-2"
- Description: Classical biological control for the management of floating invasive plants has been highly successful in South Africa. However, restoring ecosystem services has been compromised by a new suite of submerged invasive plants. This study proposes that biological control of floating invasive macrophytes acts as a catalyst in a regime shift between floating and submerged invasive plant dominance. Regime shifts are large and sudden changes in the structure and functioning of ecosystems. The proposed shift is driven by the rapid decomposition of floating plants and subsequent increase in availability of nutrients and light. A mesocosm experiment explored the effect of biological control on floating Pistia stratiotes L. (Araceae) upon the growth of invasive submerged Egeria densa Planch. (Hydrocharitaceae), and native submerged plant species of the same family; Lagarosiphon major (Ridl.) Moss (Hydrocharitaceae). The results revealed a cascade effect of biological control of P. stratiotes on the availability of nitrogen, resulting in increased relative growth rates and invasive capacity for E. densa. In contrast, the native L. major could not compete with healthy or damaged P. stratiotes. These findings highlight the vulnerability of South African freshwater systems to submerged plant invasions and demonstrate the importance of a more holistic approach to invasive plant management.
- Full Text:
- Date Issued: 2018
- Authors: Strange, Emily F , Hill, Martin P , Coetzee, Julie A
- Date: 2018
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/423993 , vital:72114 , xlink:href="https://doi.org/10.1007/s10750-018-3506-2"
- Description: Classical biological control for the management of floating invasive plants has been highly successful in South Africa. However, restoring ecosystem services has been compromised by a new suite of submerged invasive plants. This study proposes that biological control of floating invasive macrophytes acts as a catalyst in a regime shift between floating and submerged invasive plant dominance. Regime shifts are large and sudden changes in the structure and functioning of ecosystems. The proposed shift is driven by the rapid decomposition of floating plants and subsequent increase in availability of nutrients and light. A mesocosm experiment explored the effect of biological control on floating Pistia stratiotes L. (Araceae) upon the growth of invasive submerged Egeria densa Planch. (Hydrocharitaceae), and native submerged plant species of the same family; Lagarosiphon major (Ridl.) Moss (Hydrocharitaceae). The results revealed a cascade effect of biological control of P. stratiotes on the availability of nitrogen, resulting in increased relative growth rates and invasive capacity for E. densa. In contrast, the native L. major could not compete with healthy or damaged P. stratiotes. These findings highlight the vulnerability of South African freshwater systems to submerged plant invasions and demonstrate the importance of a more holistic approach to invasive plant management.
- Full Text:
- Date Issued: 2018
Integrating chemical control with sterile insect releases in an integrated pest management programme for Thaumatotibia leucotreta
- Nepgen, Eugene, Moore, Sean D, Hill, Martin P
- Authors: Nepgen, Eugene , Moore, Sean D , Hill, Martin P
- Date: 2018
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/423770 , vital:72092 , xlink:href="https://doi.org/10.1111/jen.12487"
- Description: False codling moth Thaumatotibia leucotreta (Meyrick) (Lepidoptera: Tortricidae) is an important indigenous pest of citrus in southern Africa. Successful control is dependent upon integration of area-wide sterile insect releases and other suppression methods. The aim of this work was to test pyrethroid and organophosphate-based insecticides (tau-fluvalinate and chlorpyrifos) for their residual effect on mortality of released irradiated T. leucotreta male moths. Both of these insecticides were effective in killing irradiated T. leucotreta for 7 days after application on leaves, after which degradation of the active ingredient resulted in a marked reduction in efficacy after 14 days and rendering them harmless. Mortality was found to be similar for irradiated and non-irradiated male T. leucotreta after treatment. Consequently, even though these insecticides might have an effect on moths in the field, ratios of sterile:wild moths should not be altered. Supporting field data from six sites in the Sundays River Valley over a season of sterile insect releases showed the conventional chemical crop protection programme to be as effective as an integrated pest management programme in facilitating effective control of T. leucotreta through sterile insect releases. The study also confirmed that the ratios of sterile:wild male moths in the commercial citrus orchards were not affected by the application of insecticides. These findings confirm the high potential of sterile insect releases for control of T. leucotreta in citrus.
- Full Text:
- Date Issued: 2018
- Authors: Nepgen, Eugene , Moore, Sean D , Hill, Martin P
- Date: 2018
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/423770 , vital:72092 , xlink:href="https://doi.org/10.1111/jen.12487"
- Description: False codling moth Thaumatotibia leucotreta (Meyrick) (Lepidoptera: Tortricidae) is an important indigenous pest of citrus in southern Africa. Successful control is dependent upon integration of area-wide sterile insect releases and other suppression methods. The aim of this work was to test pyrethroid and organophosphate-based insecticides (tau-fluvalinate and chlorpyrifos) for their residual effect on mortality of released irradiated T. leucotreta male moths. Both of these insecticides were effective in killing irradiated T. leucotreta for 7 days after application on leaves, after which degradation of the active ingredient resulted in a marked reduction in efficacy after 14 days and rendering them harmless. Mortality was found to be similar for irradiated and non-irradiated male T. leucotreta after treatment. Consequently, even though these insecticides might have an effect on moths in the field, ratios of sterile:wild moths should not be altered. Supporting field data from six sites in the Sundays River Valley over a season of sterile insect releases showed the conventional chemical crop protection programme to be as effective as an integrated pest management programme in facilitating effective control of T. leucotreta through sterile insect releases. The study also confirmed that the ratios of sterile:wild male moths in the commercial citrus orchards were not affected by the application of insecticides. These findings confirm the high potential of sterile insect releases for control of T. leucotreta in citrus.
- Full Text:
- Date Issued: 2018
Morphological, genetic and biological characterisation of a novel alphabaculovirus isolated from Cryptophlebia peltastica (Lepidoptera: Tortricidae)
- Marsberg, Tamryn, Jukes, Michael, Krejmer-Rabalska, Martyna, Rabalski, Lukasz, Knox, Caroline M, Moore, Sean D, Hill, Martin P, Szewczyk, Boguslaw
- Authors: Marsberg, Tamryn , Jukes, Michael , Krejmer-Rabalska, Martyna , Rabalski, Lukasz , Knox, Caroline M , Moore, Sean D , Hill, Martin P , Szewczyk, Boguslaw
- Date: 2018
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/419330 , vital:71635 , xlink:href="https://doi.org/10.1016/j.jip.2018.08.006"
- Description: Cryptophlebia peltastica is an agricultural pest of litchis and macadamias in South Africa with phytosanitary status for certain markets. Current control methods rely on chemical, cultural and classical biological control. However, a microbial control option has not been developed. An Alphabaculovirus from C. peltastica was recovered from a laboratory reared colony and morphologically characterised by transmission electron microscopy (TEM). Analysis of occlusion bodies indicated a single NPV (SNPV) varying in size from 421 to 1263 nm. PCR amplification and sequencing of the polh gene region using universal primers followed by BLAST analysis revealed a 93% similarity to a partial polh gene sequence from Epinotia granitalis NPV. Further genetic characterisation involving single restriction endonuclease (REN) digestion of genomic DNA was carried out to generate profiles for comparison against other baculovirus species and potential new isolates of the same virus. The complete genome of the virus was sequenced, assembled and analysed for a more comprehensive genetic analysis. The genome was 115 728 base pairs (bp) in length with a GC content of 37.2%. A total of 126 open reading frames (ORFs) were identified with minimal overlap and no preference in orientation. Bioassays were used to determine the virulence of the NPV against C. peltastica. The NPV was virulent against C. peltastica with an LC50 value of 6.46 × 103 OBs/ml and an LC90 value of 2.46 × 105 OBs/ml, and time mortality ranging between 76.32 h and 93.49 h. This is the first study to describe the isolation and genetic characterisation of a novel SNPV from C. peltastica, which has potential for development into a biopesticide for the control of this pest in South Africa.
- Full Text:
- Date Issued: 2018
- Authors: Marsberg, Tamryn , Jukes, Michael , Krejmer-Rabalska, Martyna , Rabalski, Lukasz , Knox, Caroline M , Moore, Sean D , Hill, Martin P , Szewczyk, Boguslaw
- Date: 2018
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/419330 , vital:71635 , xlink:href="https://doi.org/10.1016/j.jip.2018.08.006"
- Description: Cryptophlebia peltastica is an agricultural pest of litchis and macadamias in South Africa with phytosanitary status for certain markets. Current control methods rely on chemical, cultural and classical biological control. However, a microbial control option has not been developed. An Alphabaculovirus from C. peltastica was recovered from a laboratory reared colony and morphologically characterised by transmission electron microscopy (TEM). Analysis of occlusion bodies indicated a single NPV (SNPV) varying in size from 421 to 1263 nm. PCR amplification and sequencing of the polh gene region using universal primers followed by BLAST analysis revealed a 93% similarity to a partial polh gene sequence from Epinotia granitalis NPV. Further genetic characterisation involving single restriction endonuclease (REN) digestion of genomic DNA was carried out to generate profiles for comparison against other baculovirus species and potential new isolates of the same virus. The complete genome of the virus was sequenced, assembled and analysed for a more comprehensive genetic analysis. The genome was 115 728 base pairs (bp) in length with a GC content of 37.2%. A total of 126 open reading frames (ORFs) were identified with minimal overlap and no preference in orientation. Bioassays were used to determine the virulence of the NPV against C. peltastica. The NPV was virulent against C. peltastica with an LC50 value of 6.46 × 103 OBs/ml and an LC90 value of 2.46 × 105 OBs/ml, and time mortality ranging between 76.32 h and 93.49 h. This is the first study to describe the isolation and genetic characterisation of a novel SNPV from C. peltastica, which has potential for development into a biopesticide for the control of this pest in South Africa.
- Full Text:
- Date Issued: 2018
Synergies between research organisations and the wider community in enhancing weed biological control in South Africa
- Martin, Grant D, Hill, Martin P, Coetzee, Julie A, Weaver, Kim N, Hill, Jaclyn M
- Authors: Martin, Grant D , Hill, Martin P , Coetzee, Julie A , Weaver, Kim N , Hill, Jaclyn M
- Date: 2018
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/68452 , vital:29258 , https://doi.org/10.1007/s10526-017-9846-4
- Description: Biological control offers a cost effective and ecologically sustainable tool for the management of invasive alien plants. Its implementation, however, has historically been slow and poorly co-ordinated. In South Africa, as in many other countries, most aspects of biological control programmes were done by researchers, but from 1995 onwards, with the advent of the Working for Water Programme, a more inclusive approach to biological control has been adopted. In this paper, we report on the development of community-based biological control implementation programmes in South Africa, after 1995, and highlight a number of initiatives, including employing persons with disabilities at mass-rearing facilities and in particular, we outline a suite of educational and outreach programmes for the general public and for schools, which have increased capacity, education and employment in the field of weed biological control.
- Full Text:
- Date Issued: 2018
- Authors: Martin, Grant D , Hill, Martin P , Coetzee, Julie A , Weaver, Kim N , Hill, Jaclyn M
- Date: 2018
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/68452 , vital:29258 , https://doi.org/10.1007/s10526-017-9846-4
- Description: Biological control offers a cost effective and ecologically sustainable tool for the management of invasive alien plants. Its implementation, however, has historically been slow and poorly co-ordinated. In South Africa, as in many other countries, most aspects of biological control programmes were done by researchers, but from 1995 onwards, with the advent of the Working for Water Programme, a more inclusive approach to biological control has been adopted. In this paper, we report on the development of community-based biological control implementation programmes in South Africa, after 1995, and highlight a number of initiatives, including employing persons with disabilities at mass-rearing facilities and in particular, we outline a suite of educational and outreach programmes for the general public and for schools, which have increased capacity, education and employment in the field of weed biological control.
- Full Text:
- Date Issued: 2018
The contributions of biological control to reduced plant size and biomass of water hyacinth populations
- Jones, Roy W, Hill, Jaclyn M, Coetzee, Julie A, Hill, Martin P
- Authors: Jones, Roy W , Hill, Jaclyn M , Coetzee, Julie A , Hill, Martin P
- Date: 2018
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/68803 , vital:29326 , https://0-doi.org.wam.seals.ac.za/10.1007/s10750-017-3413-y
- Description: Water hyacinth is invasive in many countries, where it reduces aquatic biodiversity and limits water resource utilisation. Biological control of water hyacinth has been successful in South Africa, but has suffered from a lack of empirical data to prove causation. Insect exclusion trials were conducted to quantify the contribution of Neochetina eichhorniae and N. bruchi to the integrated control of water hyacinth on the Nseleni River, South Africa. Insecticide was not expected to induce phytotoxicity, but would prevent weevil damage in water hyacinth plants; and weevil herbivory was predicted to reduce plant petiole length, and above/below surface biomass. Results showed that insecticide had no phytotoxic effects and excluded weevils for 3 weeks, providing a baseline for field applications. Biological control on the Nseleni River directly affected water hyacinth biomass and petiole length, but did not affect plant cover. Plants subject to weevil herbivory demonstrated reductions in above and below surface biomass and had shorter petioles compared to insect-free plants. Dead biomass was also higher in biological control treatments. Biological control strongly affects plant size, biomass and vigour; however, further integrated control is required to facilitate reduction in mat cover, which is the goalpost for successful control of floating aquatic plants.
- Full Text: false
- Date Issued: 2018
- Authors: Jones, Roy W , Hill, Jaclyn M , Coetzee, Julie A , Hill, Martin P
- Date: 2018
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/68803 , vital:29326 , https://0-doi.org.wam.seals.ac.za/10.1007/s10750-017-3413-y
- Description: Water hyacinth is invasive in many countries, where it reduces aquatic biodiversity and limits water resource utilisation. Biological control of water hyacinth has been successful in South Africa, but has suffered from a lack of empirical data to prove causation. Insect exclusion trials were conducted to quantify the contribution of Neochetina eichhorniae and N. bruchi to the integrated control of water hyacinth on the Nseleni River, South Africa. Insecticide was not expected to induce phytotoxicity, but would prevent weevil damage in water hyacinth plants; and weevil herbivory was predicted to reduce plant petiole length, and above/below surface biomass. Results showed that insecticide had no phytotoxic effects and excluded weevils for 3 weeks, providing a baseline for field applications. Biological control on the Nseleni River directly affected water hyacinth biomass and petiole length, but did not affect plant cover. Plants subject to weevil herbivory demonstrated reductions in above and below surface biomass and had shorter petioles compared to insect-free plants. Dead biomass was also higher in biological control treatments. Biological control strongly affects plant size, biomass and vigour; however, further integrated control is required to facilitate reduction in mat cover, which is the goalpost for successful control of floating aquatic plants.
- Full Text: false
- Date Issued: 2018
- «
- ‹
- 1
- ›
- »