Out of Africa?: a dated molecular phylogeny of the cicada tribe Platypleurini Schmidt (Hemiptera: Cicadidae), with a focus on African genera and the genus Platypleura Amyot and Audinet‐Serville
- Price, Benjamin W, Marshall, David C, Barker, Nigel P, Simon, Chris, Villet, Martin H
- Authors: Price, Benjamin W , Marshall, David C , Barker, Nigel P , Simon, Chris , Villet, Martin H
- Date: 2019
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/140704 , vital:37911 , DOI: 10.1111/syen.12360
- Description: The Platypleurini is a large group of charismatic cicadas distributed from Cape Agulhas in South Africa, through tropical Africa, Madagascar, India and eastern Asia to Japan, with generic diversity concentrated in equatorial and southern Africa. This distribution suggests the possibility of a Gondwanan origin and dispersal to eastern Asia from Africa or India. We used a four-gene (three mitochondrial) molecular dataset, fossil calibrations and molecular clock information to explore the phylogenetic relationships of the platypleurine cicadas and the timing and geography of their diversification. The earliest splits in the tribe were found to separate forest genera in Madagascar and equatorial Africa from the main radiation, and all of the Asian/Indian species sampled formed a younger clade nested well within the African taxa.
- Full Text:
- Date Issued: 2019
- Authors: Price, Benjamin W , Marshall, David C , Barker, Nigel P , Simon, Chris , Villet, Martin H
- Date: 2019
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/140704 , vital:37911 , DOI: 10.1111/syen.12360
- Description: The Platypleurini is a large group of charismatic cicadas distributed from Cape Agulhas in South Africa, through tropical Africa, Madagascar, India and eastern Asia to Japan, with generic diversity concentrated in equatorial and southern Africa. This distribution suggests the possibility of a Gondwanan origin and dispersal to eastern Asia from Africa or India. We used a four-gene (three mitochondrial) molecular dataset, fossil calibrations and molecular clock information to explore the phylogenetic relationships of the platypleurine cicadas and the timing and geography of their diversification. The earliest splits in the tribe were found to separate forest genera in Madagascar and equatorial Africa from the main radiation, and all of the Asian/Indian species sampled formed a younger clade nested well within the African taxa.
- Full Text:
- Date Issued: 2019
Cryptic variation in an ecological indicator organism: mitochondrial and nuclear DNA sequence data confirm distinct lineages of Baetis harrisoni Barnard (Ephemeroptera: Baetidae) in Southern Africa
- Pereira-da-Conceicoa, Lyndall L, Price, Benjamin W, Barber-James, Helen M, Barker, Nigel P, de Moor, Ferdy C, Villet, Martin H
- Authors: Pereira-da-Conceicoa, Lyndall L , Price, Benjamin W , Barber-James, Helen M , Barker, Nigel P , de Moor, Ferdy C , Villet, Martin H
- Date: 2012
- Language: English
- Type: Article
- Identifier: vital:6535 , http://hdl.handle.net/10962/d1005976 , https://dx.doi.org/10.1186/1471-2148-12-26
- Description: Baetis harrisoni Barnard is a mayfly frequently encountered in river studies across Africa, but the external morphological features used for identifying nymphs have been observed to vary subtly between different geographic locations. It has been associated with a wide range of ecological conditions, including pH extremes of pH 2.9–10.0 in polluted waters. We present a molecular study of the genetic variation within B. harrisoni across 21 rivers in its distribution range in southern Africa.
- Full Text:
- Date Issued: 2012
- Authors: Pereira-da-Conceicoa, Lyndall L , Price, Benjamin W , Barber-James, Helen M , Barker, Nigel P , de Moor, Ferdy C , Villet, Martin H
- Date: 2012
- Language: English
- Type: Article
- Identifier: vital:6535 , http://hdl.handle.net/10962/d1005976 , https://dx.doi.org/10.1186/1471-2148-12-26
- Description: Baetis harrisoni Barnard is a mayfly frequently encountered in river studies across Africa, but the external morphological features used for identifying nymphs have been observed to vary subtly between different geographic locations. It has been associated with a wide range of ecological conditions, including pH extremes of pH 2.9–10.0 in polluted waters. We present a molecular study of the genetic variation within B. harrisoni across 21 rivers in its distribution range in southern Africa.
- Full Text:
- Date Issued: 2012
Using molecules and morphology to infer the phylogenetic relationships and evolutionary history of the Dirini (Nymphalidae: Satyrinae), a tribe of butterflies endemic to Southern Africa
- Price, Benjamin W, Villet, Martin H, Walton, Shaun M, Barker, Nigel P
- Authors: Price, Benjamin W , Villet, Martin H , Walton, Shaun M , Barker, Nigel P
- Date: 2011
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/442397 , vital:73981 , https://doi.org/10.1111/j.1365-3113.2010.00560.x
- Description: The first empirically supported phylogenetic hypothesis of relationships for the southern African endemic butterfly tribe Dirini is presented. Data derived from the morphology and ecology of the adults and immature stages (33 characters), and portions of the mitochondrial gene cytochrome oxidase I (COI) and the nuclear genes elongation factor 1α (EF1α) and wingless (WG) (totalling 1734 bp) were used to infer the relationships of the in‐group genera. An expanded molecular dataset using four genera from the Nymphalini and Satyrini to root the tree, and three genera from the Melanitini to test the monophyly of the tribe, was analysed using parsimony and Bayesian methods. Estimates of divergence times were calculated using two fossil calibrations under a relaxed molecular clock model. The monophyly of the tribe and each in‐group genus were strongly supported. Key findings are the sister‐taxon relationship of Aeropetes and Tarsocera, the apparent simultaneous or nearly simultaneous radiation of four lineages, the polyphyly of the species within Torynesis, and the apparent trans‐Atlantic dispersal of the ancestors of Manataria about 40 Ma. Estimates of divergence times indicate that the tribe has undergone two major radiations since its origin: the first when they left forest habitats in the mid–late Oligocene, shortly after the radiation of the grasses (Poaceae), and the second in the early‐middle Pliocene, coinciding with the aridification of southern Africa and the spread of conditions that favoured C4 grasses over the C3 grasses that dirine larvae prefer to eat. The high species diversity within the tribe appears to be partly a taxonomic artefact that may have resulted from the misinterpretation of climate-related phenotypic variation within extant species. Relocation and breeding experiments should test this hypothesis.
- Full Text:
- Date Issued: 2011
- Authors: Price, Benjamin W , Villet, Martin H , Walton, Shaun M , Barker, Nigel P
- Date: 2011
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/442397 , vital:73981 , https://doi.org/10.1111/j.1365-3113.2010.00560.x
- Description: The first empirically supported phylogenetic hypothesis of relationships for the southern African endemic butterfly tribe Dirini is presented. Data derived from the morphology and ecology of the adults and immature stages (33 characters), and portions of the mitochondrial gene cytochrome oxidase I (COI) and the nuclear genes elongation factor 1α (EF1α) and wingless (WG) (totalling 1734 bp) were used to infer the relationships of the in‐group genera. An expanded molecular dataset using four genera from the Nymphalini and Satyrini to root the tree, and three genera from the Melanitini to test the monophyly of the tribe, was analysed using parsimony and Bayesian methods. Estimates of divergence times were calculated using two fossil calibrations under a relaxed molecular clock model. The monophyly of the tribe and each in‐group genus were strongly supported. Key findings are the sister‐taxon relationship of Aeropetes and Tarsocera, the apparent simultaneous or nearly simultaneous radiation of four lineages, the polyphyly of the species within Torynesis, and the apparent trans‐Atlantic dispersal of the ancestors of Manataria about 40 Ma. Estimates of divergence times indicate that the tribe has undergone two major radiations since its origin: the first when they left forest habitats in the mid–late Oligocene, shortly after the radiation of the grasses (Poaceae), and the second in the early‐middle Pliocene, coinciding with the aridification of southern Africa and the spread of conditions that favoured C4 grasses over the C3 grasses that dirine larvae prefer to eat. The high species diversity within the tribe appears to be partly a taxonomic artefact that may have resulted from the misinterpretation of climate-related phenotypic variation within extant species. Relocation and breeding experiments should test this hypothesis.
- Full Text:
- Date Issued: 2011
A watershed study on genetic diversity phylogenetic analysis of the Platypleura plumosa (Hemiptera Cicadidae) complex reveals catchment-specific lineages
- Price, Benjamin W, Barker, Nigel P, Villet, Martin H
- Authors: Price, Benjamin W , Barker, Nigel P , Villet, Martin H
- Date: 2010
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/441711 , vital:73909 , https://doi.org/10.1016/j.ympev.2009.10.011
- Description: Historical biogeography studies have at their disposal a small suite of vicariance models to explain genetic differentiation within and between species. One of these processes involves the role of river catchments and their associated watersheds, in driving diversification and is applicable to both aquatic and terrestrial organisms. Although the idea of catchments structuring the genetic history of aquatic organisms is reasonably well understood, their effect on terrestrial organisms has largely been overlooked, with relevant studies being limited in scope. South Africa presents a perfect test-bed for elucidating this mechanism of diversification due to its rich biodiversity, range of climatic environments and many large river catchments. Here we use the cicadas of the Platypleura plumosa complex to highlight the importance of catchments and their associated watersheds in driving diversification of terrestrial invertebrates that lack an aquatic life-stage. Population structure was found to correspond to primary and in some cases secondary catchments; highlighting the need to include information on catchment structure when formulating hypotheses of population diversification. Recognizing that climate change in the near future is likely to alter the environment, and particularly precipitation patterns, insight into recent patterns of population change related to catchments may be useful in a conservation context.
- Full Text:
- Date Issued: 2010
- Authors: Price, Benjamin W , Barker, Nigel P , Villet, Martin H
- Date: 2010
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/441711 , vital:73909 , https://doi.org/10.1016/j.ympev.2009.10.011
- Description: Historical biogeography studies have at their disposal a small suite of vicariance models to explain genetic differentiation within and between species. One of these processes involves the role of river catchments and their associated watersheds, in driving diversification and is applicable to both aquatic and terrestrial organisms. Although the idea of catchments structuring the genetic history of aquatic organisms is reasonably well understood, their effect on terrestrial organisms has largely been overlooked, with relevant studies being limited in scope. South Africa presents a perfect test-bed for elucidating this mechanism of diversification due to its rich biodiversity, range of climatic environments and many large river catchments. Here we use the cicadas of the Platypleura plumosa complex to highlight the importance of catchments and their associated watersheds in driving diversification of terrestrial invertebrates that lack an aquatic life-stage. Population structure was found to correspond to primary and in some cases secondary catchments; highlighting the need to include information on catchment structure when formulating hypotheses of population diversification. Recognizing that climate change in the near future is likely to alter the environment, and particularly precipitation patterns, insight into recent patterns of population change related to catchments may be useful in a conservation context.
- Full Text:
- Date Issued: 2010
Patterns and processes underlying evolutionary significant units in the Platypleura stridula L. species complex (Hemiptera: Cicadidae) in the Cape Floristic Region, South Africa
- Price, Benjamin W, Barker, Nigel P, Villet, Martin H
- Authors: Price, Benjamin W , Barker, Nigel P , Villet, Martin H
- Date: 2007
- Language: English
- Type: Article
- Identifier: vital:6964 , http://hdl.handle.net/10962/d1012027
- Description: Cicadas have been shown to be useful organisms for examining the effects of distribution, plant association and geographical barriers on gene flow between populations. The cicadas of the Platypleura stridula species complex are restricted to the biologically diverse Cape Floristic Region (CFR) of South Africa. They are thus an excellent study group for elucidating the mechanisms by which hemipteran diversity is generated and maintained in the CFR. Phylogeographical analysis of this species complex using mitochondrial DNA Cytochrome Oxidase I (COI) and ribosomal 16S sequence data, coupled with preliminary morphological and acoustic data, resolves six clades, each of which has specific host-plant associations and distinct geographical ranges. The phylogeographical structure implies simultaneous or near-simultaneous radiation events, coupled with shifts in host-plant associations. When calibrated using published COI and 16S substitution rates typical for related insects, these lineages date back to the late Pliocene - early Pleistocene, coincident with vegetation change, altered drainage patterns and accelerated erosion in response to neotectonic crustal uplift and cyclic Pleistocene climate change, and glaciation-associated changes in climate and sea level.
- Full Text:
- Date Issued: 2007
- Authors: Price, Benjamin W , Barker, Nigel P , Villet, Martin H
- Date: 2007
- Language: English
- Type: Article
- Identifier: vital:6964 , http://hdl.handle.net/10962/d1012027
- Description: Cicadas have been shown to be useful organisms for examining the effects of distribution, plant association and geographical barriers on gene flow between populations. The cicadas of the Platypleura stridula species complex are restricted to the biologically diverse Cape Floristic Region (CFR) of South Africa. They are thus an excellent study group for elucidating the mechanisms by which hemipteran diversity is generated and maintained in the CFR. Phylogeographical analysis of this species complex using mitochondrial DNA Cytochrome Oxidase I (COI) and ribosomal 16S sequence data, coupled with preliminary morphological and acoustic data, resolves six clades, each of which has specific host-plant associations and distinct geographical ranges. The phylogeographical structure implies simultaneous or near-simultaneous radiation events, coupled with shifts in host-plant associations. When calibrated using published COI and 16S substitution rates typical for related insects, these lineages date back to the late Pliocene - early Pleistocene, coincident with vegetation change, altered drainage patterns and accelerated erosion in response to neotectonic crustal uplift and cyclic Pleistocene climate change, and glaciation-associated changes in climate and sea level.
- Full Text:
- Date Issued: 2007
- «
- ‹
- 1
- ›
- »