Detection of the in vitro modulation of Plasmodium falciparum Arf1 by Sec7 and ArfGAP domains using a colorimetric plate-based assay:
- Swart, Tarryn, Khan, Farrah D, Ntlantsana, Apelele, Laming, Dustin, Veale, Clinton G L, Przyborski, Jude M, Edkins, Adrienne L, Hoppe, Heinrich C
- Authors: Swart, Tarryn , Khan, Farrah D , Ntlantsana, Apelele , Laming, Dustin , Veale, Clinton G L , Przyborski, Jude M , Edkins, Adrienne L , Hoppe, Heinrich C
- Date: 2020
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/165418 , vital:41242 , https://0-doi.org.wam.seals.ac.za/10.1038/s41598-020-61101-3
- Description: The regulation of human Arf1 GTPase activity by ArfGEFs that stimulate GDP/GTP exchange and ArfGAPs that mediate GTP hydrolysis has attracted attention for the discovery of Arf1 inhibitors as potential anti-cancer agents. The malaria parasite Plasmodium falciparum encodes a Sec7 domain-containing protein - presumably an ArfGEF - and two putative ArfGAPs, as well as an Arf1 homologue (PfArf1) that is essential for blood-stage parasite viability. However, ArfGEF and ArfGAP-mediated activation/deactivation of PfArf1 has not been demonstrated.
- Full Text:
- Date Issued: 2020
- Authors: Swart, Tarryn , Khan, Farrah D , Ntlantsana, Apelele , Laming, Dustin , Veale, Clinton G L , Przyborski, Jude M , Edkins, Adrienne L , Hoppe, Heinrich C
- Date: 2020
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/165418 , vital:41242 , https://0-doi.org.wam.seals.ac.za/10.1038/s41598-020-61101-3
- Description: The regulation of human Arf1 GTPase activity by ArfGEFs that stimulate GDP/GTP exchange and ArfGAPs that mediate GTP hydrolysis has attracted attention for the discovery of Arf1 inhibitors as potential anti-cancer agents. The malaria parasite Plasmodium falciparum encodes a Sec7 domain-containing protein - presumably an ArfGEF - and two putative ArfGAPs, as well as an Arf1 homologue (PfArf1) that is essential for blood-stage parasite viability. However, ArfGEF and ArfGAP-mediated activation/deactivation of PfArf1 has not been demonstrated.
- Full Text:
- Date Issued: 2020
Synthesis, structure and in vitro anti-trypanosomal activity of non-toxic Arylpyrrole-Based Chalcone derivatives:
- Zulu, Ayanda I, Oderinlo, Ogunyemi O, Kruger, Cuan, Isaacs, Michelle, Hoppe, Heinrich C, Smith, Vincent J, Veale, Clinton G L, Khanye, Setshaba D
- Authors: Zulu, Ayanda I , Oderinlo, Ogunyemi O , Kruger, Cuan , Isaacs, Michelle , Hoppe, Heinrich C , Smith, Vincent J , Veale, Clinton G L , Khanye, Setshaba D
- Date: 2020
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/179017 , vital:40096 , https://doi.org/10.3390/molecules25071668
- Description: With an intention of identifying chalcone derivatives exhibiting anti-protozoal activity, a cohort of relatively unexplored arylpyrrole-based chalcone derivatives were synthesized in moderate to good yields. The resultant compounds were evaluated in vitro for their potential activity against a cultured Trypanosoma brucei brucei 427 strain. Several compounds displayed mostly modest in vitro anti-trypanosomal activity with compounds 10e and 10h emerging as active candidates with IC50 values of 4.09 and 5.11 µM, respectively. More importantly, a concomitant assessment of their activity against a human cervix adenocarcinoma (HeLa) cell line revealed that these compounds are non-toxic.
- Full Text:
- Date Issued: 2020
- Authors: Zulu, Ayanda I , Oderinlo, Ogunyemi O , Kruger, Cuan , Isaacs, Michelle , Hoppe, Heinrich C , Smith, Vincent J , Veale, Clinton G L , Khanye, Setshaba D
- Date: 2020
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/179017 , vital:40096 , https://doi.org/10.3390/molecules25071668
- Description: With an intention of identifying chalcone derivatives exhibiting anti-protozoal activity, a cohort of relatively unexplored arylpyrrole-based chalcone derivatives were synthesized in moderate to good yields. The resultant compounds were evaluated in vitro for their potential activity against a cultured Trypanosoma brucei brucei 427 strain. Several compounds displayed mostly modest in vitro anti-trypanosomal activity with compounds 10e and 10h emerging as active candidates with IC50 values of 4.09 and 5.11 µM, respectively. More importantly, a concomitant assessment of their activity against a human cervix adenocarcinoma (HeLa) cell line revealed that these compounds are non-toxic.
- Full Text:
- Date Issued: 2020
Use of a non-hepatic cell line highlights limitations associated with cell-based assessment of metabolically induced toxicity:
- Weyers, Carli, Dingle, Laura M K, Wilhelmi, Brendan S, Edkins, Adrienne L, Veale, Clinton G L
- Authors: Weyers, Carli , Dingle, Laura M K , Wilhelmi, Brendan S , Edkins, Adrienne L , Veale, Clinton G L
- Date: 2020
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/160290 , vital:40431 , DOI: 10.1080/01480545.2019.1585869
- Description: Metabolically induced drug-toxicity is a major cause of drug failure late in drug optimization phases. Accordingly, in vitro metabolic profiling of compounds is being introduced at earlier stages of the drug discovery pipeline. An increasingly common method to obtain these profiles is through overexpression of key CYP450 metabolic enzymes in immortalized liver cells, to generate competent hepatocyte surrogates. Enhanced cytotoxicity is presumed to be due to toxic metabolite production via the overexpressed enzyme. However, metabolically induced toxicity is a complex multi-parameter phenomenon and the potential background contribution to metabolism arising from the use of liver cells which endogenously express CYP450 isoforms is consistently overlooked. In this study, we sought to reduce the potential background interference by applying this methodology in kidney-derived HEK293 cells which lack endogenous CYP450 expression.
- Full Text:
- Date Issued: 2020
- Authors: Weyers, Carli , Dingle, Laura M K , Wilhelmi, Brendan S , Edkins, Adrienne L , Veale, Clinton G L
- Date: 2020
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/160290 , vital:40431 , DOI: 10.1080/01480545.2019.1585869
- Description: Metabolically induced drug-toxicity is a major cause of drug failure late in drug optimization phases. Accordingly, in vitro metabolic profiling of compounds is being introduced at earlier stages of the drug discovery pipeline. An increasingly common method to obtain these profiles is through overexpression of key CYP450 metabolic enzymes in immortalized liver cells, to generate competent hepatocyte surrogates. Enhanced cytotoxicity is presumed to be due to toxic metabolite production via the overexpressed enzyme. However, metabolically induced toxicity is a complex multi-parameter phenomenon and the potential background contribution to metabolism arising from the use of liver cells which endogenously express CYP450 isoforms is consistently overlooked. In this study, we sought to reduce the potential background interference by applying this methodology in kidney-derived HEK293 cells which lack endogenous CYP450 expression.
- Full Text:
- Date Issued: 2020
Blending problem-based learning and peer-led team learning, in an open ended ‘home-grown’pharmaceutical chemistry case study
- Sewry, Joyce D, Veale, Clinton G L, Krause, Rui W M
- Authors: Sewry, Joyce D , Veale, Clinton G L , Krause, Rui W M
- Date: 2018
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/125691 , vital:35809 , https://doi.org/10.1039/C7RP00180K
- Description: Pharmaceutical chemistry, medicinal chemistry and the drug discovery process require experienced practitioners to employ reasoned speculation in generating creative ideas, which can be used to evolve promising molecules into drugs. The ever-evolving world of pharmaceutical chemistry requires university curricula that prepare graduates for their role as designers with the capability of applying complex concepts in pharmaceutical chemistry, thereby improving the decision-making process. Common methods of teaching drug discovery, including the linear nature of the traditional case study model, do not provide a realistic picture of the underlying complexity of the process, nor do they equip students with the appropriate tools for personal sense making and abstraction. In this work, we discuss the creation of an open-ended, nonlinear case study for 3rd year pharmaceutical chemistry students, developed from drug discovery research conducted at Rhodes University. Furthermore, we discuss blending problem based learning (PBL) with peer-led team learning (PLTL) in the context of curriculum transformation, underpinned by the theory of semantic waves, to assist students in the early attainment of abstract concepts and answer questions of contextualisation, personal sense making, relatability, relevance and ultimately the skills for lifelong learning.
- Full Text:
- Date Issued: 2018
- Authors: Sewry, Joyce D , Veale, Clinton G L , Krause, Rui W M
- Date: 2018
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/125691 , vital:35809 , https://doi.org/10.1039/C7RP00180K
- Description: Pharmaceutical chemistry, medicinal chemistry and the drug discovery process require experienced practitioners to employ reasoned speculation in generating creative ideas, which can be used to evolve promising molecules into drugs. The ever-evolving world of pharmaceutical chemistry requires university curricula that prepare graduates for their role as designers with the capability of applying complex concepts in pharmaceutical chemistry, thereby improving the decision-making process. Common methods of teaching drug discovery, including the linear nature of the traditional case study model, do not provide a realistic picture of the underlying complexity of the process, nor do they equip students with the appropriate tools for personal sense making and abstraction. In this work, we discuss the creation of an open-ended, nonlinear case study for 3rd year pharmaceutical chemistry students, developed from drug discovery research conducted at Rhodes University. Furthermore, we discuss blending problem based learning (PBL) with peer-led team learning (PLTL) in the context of curriculum transformation, underpinned by the theory of semantic waves, to assist students in the early attainment of abstract concepts and answer questions of contextualisation, personal sense making, relatability, relevance and ultimately the skills for lifelong learning.
- Full Text:
- Date Issued: 2018
Expanding the SAR of Nontoxic Antiplasmodial Indolyl-3-ethanone Ethers and Thioethers:
- Lunga, Mayibongwe J, Chisango, Ruramai L, Weyers, Carli, Isaacs, Michelle, Taylor, Dale, Edkins, Adrienne L, Khanye, Setshaba D, Hoppe, Heinrich C, Veale, Clinton G L
- Authors: Lunga, Mayibongwe J , Chisango, Ruramai L , Weyers, Carli , Isaacs, Michelle , Taylor, Dale , Edkins, Adrienne L , Khanye, Setshaba D , Hoppe, Heinrich C , Veale, Clinton G L
- Date: 2018
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/164389 , vital:41114 , DOI: 10.1002/cmdc.201800235
- Description: Despite major strides in reducing Plasmodium falciparum infections, this parasite still accounts for roughly half a million annual deaths. This problem is compounded by the decreased efficacy of artemisinin combination therapies. Therefore, the development and optimisation of novel antimalarial chemotypes is critical. In this study, we describe our strategic approach to optimise a class of previously reported antimalarials, resulting in the discovery of 1-(5-chloro-1H-indol-3-yl)-2-[(4-cyanophenyl)thio]ethanone (13) and 1-(5-chloro-1H-indol-3-yl)-2-[(4-nitrophenyl)thio]ethanone (14), whose activity was equipotent to that of chloroquine against the P. falciparum 3D7 strain.
- Full Text:
- Date Issued: 2018
- Authors: Lunga, Mayibongwe J , Chisango, Ruramai L , Weyers, Carli , Isaacs, Michelle , Taylor, Dale , Edkins, Adrienne L , Khanye, Setshaba D , Hoppe, Heinrich C , Veale, Clinton G L
- Date: 2018
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/164389 , vital:41114 , DOI: 10.1002/cmdc.201800235
- Description: Despite major strides in reducing Plasmodium falciparum infections, this parasite still accounts for roughly half a million annual deaths. This problem is compounded by the decreased efficacy of artemisinin combination therapies. Therefore, the development and optimisation of novel antimalarial chemotypes is critical. In this study, we describe our strategic approach to optimise a class of previously reported antimalarials, resulting in the discovery of 1-(5-chloro-1H-indol-3-yl)-2-[(4-cyanophenyl)thio]ethanone (13) and 1-(5-chloro-1H-indol-3-yl)-2-[(4-nitrophenyl)thio]ethanone (14), whose activity was equipotent to that of chloroquine against the P. falciparum 3D7 strain.
- Full Text:
- Date Issued: 2018
NMR structural elucidation of channaine, an unusual alkaloid from Sceletium tortuosum:
- Veale, Clinton G L, Chen, Weiyang, Chaudhary, Sushil, Kituyi, Sarah N, Isaacs, Michelle, Hoppe, Heinrich C, Edkins, Adrienne L, Combrinck, Sandra, Mehari, Bewketu, Viljoen, Alvaro
- Authors: Veale, Clinton G L , Chen, Weiyang , Chaudhary, Sushil , Kituyi, Sarah N , Isaacs, Michelle , Hoppe, Heinrich C , Edkins, Adrienne L , Combrinck, Sandra , Mehari, Bewketu , Viljoen, Alvaro
- Date: 2018
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/164345 , vital:41110 , DOI: 10.1016/j.phytol.2017.11.018
- Description: Chemical interrogation of the Sceletium genus and Amaryllidaceae family of plants has yielded a diverse array of aryl-hydroindole containing alkaloids. Included in this class is channaine, which was tentatively identified, without comprehensive structural elucidation from Sceletium tortuosum in 1957. Following its isolation from S. strictum, the structure of channaine was eventually resolved by X-ray crystallographic analysis, which revealed an unusual cage-like ring structure at the interface of two aryl-hydroindole subunits. However, since this report in 1978, channaine has not re-appeared in the literature. In this letter, the full NMR characterisation of channaine, isolated from S. tortuosum collected from St Helena in the Western Cape Province of South Africa, is reported for the first time.
- Full Text:
- Date Issued: 2018
- Authors: Veale, Clinton G L , Chen, Weiyang , Chaudhary, Sushil , Kituyi, Sarah N , Isaacs, Michelle , Hoppe, Heinrich C , Edkins, Adrienne L , Combrinck, Sandra , Mehari, Bewketu , Viljoen, Alvaro
- Date: 2018
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/164345 , vital:41110 , DOI: 10.1016/j.phytol.2017.11.018
- Description: Chemical interrogation of the Sceletium genus and Amaryllidaceae family of plants has yielded a diverse array of aryl-hydroindole containing alkaloids. Included in this class is channaine, which was tentatively identified, without comprehensive structural elucidation from Sceletium tortuosum in 1957. Following its isolation from S. strictum, the structure of channaine was eventually resolved by X-ray crystallographic analysis, which revealed an unusual cage-like ring structure at the interface of two aryl-hydroindole subunits. However, since this report in 1978, channaine has not re-appeared in the literature. In this letter, the full NMR characterisation of channaine, isolated from S. tortuosum collected from St Helena in the Western Cape Province of South Africa, is reported for the first time.
- Full Text:
- Date Issued: 2018
Unexpected transformations of 3-(bromoacetyl)coumarin provides new evidence for the mechanism of thiol mediated dehalogenation of α-halocarbonyls
- Magwenzi, Faith N, Khanye, Setshaba D, Veale, Clinton G L
- Authors: Magwenzi, Faith N , Khanye, Setshaba D , Veale, Clinton G L
- Date: 2017
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/66200 , vital:28916 , https://doi.org/10.1016/j.tetlet.2017.01.082
- Description: publisher version , The mechanism for the thiol mediated dehalogenation of α-halogenated carbonyls has remained an unresolved problem, despite its ongoing application in synthetic organic chemistry. Nakamura and co-workers first proposed that net dehalogenation occurs via sequential nucleophilic substitutions, while Israel and co-workers concluded that the rate at which dehalogenation occurred suggested that dehalogenation proceeds in a single concerted step. In this study, we investigated the debromination and nucleophilic substitution of 3-(bromoacetyl)coumarin with a variety of thiophenols, whose electron donating or withdrawing natures resulted in large variations in the degree of nucleophilic substitution and dehalogenation products, respectively. Results from these experiments, in addition to an unexpected formation of thioether containing dibenzo[b,d]pyran-6-ones from a Robinson annulation, has provided new evidence for this disputed mechanism.
- Full Text: false
- Date Issued: 2017
- Authors: Magwenzi, Faith N , Khanye, Setshaba D , Veale, Clinton G L
- Date: 2017
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/66200 , vital:28916 , https://doi.org/10.1016/j.tetlet.2017.01.082
- Description: publisher version , The mechanism for the thiol mediated dehalogenation of α-halogenated carbonyls has remained an unresolved problem, despite its ongoing application in synthetic organic chemistry. Nakamura and co-workers first proposed that net dehalogenation occurs via sequential nucleophilic substitutions, while Israel and co-workers concluded that the rate at which dehalogenation occurred suggested that dehalogenation proceeds in a single concerted step. In this study, we investigated the debromination and nucleophilic substitution of 3-(bromoacetyl)coumarin with a variety of thiophenols, whose electron donating or withdrawing natures resulted in large variations in the degree of nucleophilic substitution and dehalogenation products, respectively. Results from these experiments, in addition to an unexpected formation of thioether containing dibenzo[b,d]pyran-6-ones from a Robinson annulation, has provided new evidence for this disputed mechanism.
- Full Text: false
- Date Issued: 2017
Indolyl-3-ethanone-α-thioethers: a promising new class of non-toxic antimalarial agents
- Svogie, Archibald L, Isaacs, Michelle, Hoppe, Heinrich C, Khanye, Setshaba D, Veale, Clinton G L
- Authors: Svogie, Archibald L , Isaacs, Michelle , Hoppe, Heinrich C , Khanye, Setshaba D , Veale, Clinton G L
- Date: 2016
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/66233 , vital:28920 , https://doi.org/10.1016/j.ejmech.2016.02.056
- Description: publisher version , The success of chemotherapeutics in easing the burden of malaria is under continuous threat from ever-evolving parasite resistance, including resistance to artemisinin combination therapies. Therefore, the discovery of new classes of antimalarials which inhibit new biological targets is imperative to controlling malaria. Accordingly, we report here the discovery of indolyl-3-ethanone-α-thioethers, a new class of antimalarial compounds with encouraging activity. Synthesis of a focused library of compounds revealed important insight into the SAR of this class of compounds, including critical information regarding the position and chemical nature of substituents on both the thiophenol and indole rings. This investigation ultimately led to the discovery of two hit compounds (16 and 27) which exhibited nano molar in vitro antimalarial activity coupled to no observable toxicity against a HeLa cell line.
- Full Text: false
- Date Issued: 2016
- Authors: Svogie, Archibald L , Isaacs, Michelle , Hoppe, Heinrich C , Khanye, Setshaba D , Veale, Clinton G L
- Date: 2016
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/66233 , vital:28920 , https://doi.org/10.1016/j.ejmech.2016.02.056
- Description: publisher version , The success of chemotherapeutics in easing the burden of malaria is under continuous threat from ever-evolving parasite resistance, including resistance to artemisinin combination therapies. Therefore, the discovery of new classes of antimalarials which inhibit new biological targets is imperative to controlling malaria. Accordingly, we report here the discovery of indolyl-3-ethanone-α-thioethers, a new class of antimalarial compounds with encouraging activity. Synthesis of a focused library of compounds revealed important insight into the SAR of this class of compounds, including critical information regarding the position and chemical nature of substituents on both the thiophenol and indole rings. This investigation ultimately led to the discovery of two hit compounds (16 and 27) which exhibited nano molar in vitro antimalarial activity coupled to no observable toxicity against a HeLa cell line.
- Full Text: false
- Date Issued: 2016
Facile synthesis and biological evaluation of assorted indolyl-3-amides and esters from a single, stable carbonyl nitrile intermediate
- Veale, Clinton G L, Edkins, Adrienne L, de la Mare, Jo-Anne, de Kock, Carmen, Smith, Peter J, Khanye, Setshaba D
- Authors: Veale, Clinton G L , Edkins, Adrienne L , de la Mare, Jo-Anne , de Kock, Carmen , Smith, Peter J , Khanye, Setshaba D
- Date: 2015
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/66221 , vital:28919 , https://doi.org/10.1016/j.tetlet.2015.02.090
- Description: publisher version , The synthesis of biologically relevant amides and esters is routinely conducted under complex reaction conditions or requires the use of additional catalysts in order to generate sensitive electrophilic species for attack by a nucleophile. Here we present the synthesis of different indolic esters and amides from indolyl-3-carbonyl nitrile, without the requirement of anhydrous reaction conditions or catalysts. Additionally, we screened these compounds for potential in vitro antimalarial and anticancer activity, revealing 1H-indolyl-3-carboxylic acid 3-(indolyl-3-carboxamide)aminobenzyl ester to have moderate activity against both lines.
- Full Text: false
- Date Issued: 2015
- Authors: Veale, Clinton G L , Edkins, Adrienne L , de la Mare, Jo-Anne , de Kock, Carmen , Smith, Peter J , Khanye, Setshaba D
- Date: 2015
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/66221 , vital:28919 , https://doi.org/10.1016/j.tetlet.2015.02.090
- Description: publisher version , The synthesis of biologically relevant amides and esters is routinely conducted under complex reaction conditions or requires the use of additional catalysts in order to generate sensitive electrophilic species for attack by a nucleophile. Here we present the synthesis of different indolic esters and amides from indolyl-3-carbonyl nitrile, without the requirement of anhydrous reaction conditions or catalysts. Additionally, we screened these compounds for potential in vitro antimalarial and anticancer activity, revealing 1H-indolyl-3-carboxylic acid 3-(indolyl-3-carboxamide)aminobenzyl ester to have moderate activity against both lines.
- Full Text: false
- Date Issued: 2015
Synthetic analogues of the marine bisindole deoxytopsentin: potent selective inhibitors of MRSA pyruvate kinase
- Veale, Clinton G L, Zoraghi, Roya, Young, Ryan M, Morrison, James P, Pretheeban, Manoj, Lobb, Kevin A, Reiner, Neil E, Andersen, Raymond J, Davies-Coleman, Michael T
- Authors: Veale, Clinton G L , Zoraghi, Roya , Young, Ryan M , Morrison, James P , Pretheeban, Manoj , Lobb, Kevin A , Reiner, Neil E , Andersen, Raymond J , Davies-Coleman, Michael T
- Date: 2015
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/448045 , vital:74693 , xlink:href="https://doi.org/10.1021/np500755v"
- Description: As part of an ongoing study to elucidate the SAR of bisindole alkaloid inhibitors against the evolutionary conserved MRSA pyruvate kinase (PK), we present here the synthesis and biological activity of six dihalogenated analogues of the naturally occurring sponge metabolite deoxytopsentin, including the naturally occurring dibromodeoxytopsentin. The most active compounds displayed potent low nanomolar inhibitory activity against MRSA PK with concomitant significant selectivity for MRSA PK over human PK orthologues. Computational studies suggest that these potent MRSA PK inhibitors occupy a region of the small interface of the enzyme tetramer where amino acid sequence divergence from common human PK orthologues may contribute to the observed selectivity.
- Full Text:
- Date Issued: 2015
- Authors: Veale, Clinton G L , Zoraghi, Roya , Young, Ryan M , Morrison, James P , Pretheeban, Manoj , Lobb, Kevin A , Reiner, Neil E , Andersen, Raymond J , Davies-Coleman, Michael T
- Date: 2015
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/448045 , vital:74693 , xlink:href="https://doi.org/10.1021/np500755v"
- Description: As part of an ongoing study to elucidate the SAR of bisindole alkaloid inhibitors against the evolutionary conserved MRSA pyruvate kinase (PK), we present here the synthesis and biological activity of six dihalogenated analogues of the naturally occurring sponge metabolite deoxytopsentin, including the naturally occurring dibromodeoxytopsentin. The most active compounds displayed potent low nanomolar inhibitory activity against MRSA PK with concomitant significant selectivity for MRSA PK over human PK orthologues. Computational studies suggest that these potent MRSA PK inhibitors occupy a region of the small interface of the enzyme tetramer where amino acid sequence divergence from common human PK orthologues may contribute to the observed selectivity.
- Full Text:
- Date Issued: 2015
MRSA pyruvate kinase inhibitory activity of synthetically derived thiazole containing deoxytopsentin analogues
- Veale, Clinton G L, Zoraghi, Roya, Lobb, Kevin A, Reiner, Neil E, Andersen, Raymond J, Davies-Coleman, Michael T
- Authors: Veale, Clinton G L , Zoraghi, Roya , Lobb, Kevin A , Reiner, Neil E , Andersen, Raymond J , Davies-Coleman, Michael T
- Date: 2014
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/448923 , vital:74771 , xlink:href="https://www.thieme-connect.com/products/ejournals/abstract/10.1055/s-0034-1382365"
- Description: The health care crisis caused by methicillin resistant Staphylococcus aureus (MRSA) is due in part to a lack of fundamental drug discovery research into new antibiotics with novel modes of action. Marine bis-indole alkaloids have proved to be effective in vitro antibacterials. We present the synthesis of thiazole containing analogues of the marine natural product MRSA pyruvate kinase (PK) inhibitor, 6-bromodeoxytopsenin. The synthetic analogues showed moderate activity compared to the marine natural product against MRSA PK, an evolutionary conserved hub protein critical for bacterial survival. Our synthesis, via a Hantzsch thiazole condensation of α-oxo-1H-indole-3-thioacetamides with 2-bromo-1-(1H-indol-3-yl)-ethanones provided several challenges.
- Full Text:
- Date Issued: 2014
- Authors: Veale, Clinton G L , Zoraghi, Roya , Lobb, Kevin A , Reiner, Neil E , Andersen, Raymond J , Davies-Coleman, Michael T
- Date: 2014
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/448923 , vital:74771 , xlink:href="https://www.thieme-connect.com/products/ejournals/abstract/10.1055/s-0034-1382365"
- Description: The health care crisis caused by methicillin resistant Staphylococcus aureus (MRSA) is due in part to a lack of fundamental drug discovery research into new antibiotics with novel modes of action. Marine bis-indole alkaloids have proved to be effective in vitro antibacterials. We present the synthesis of thiazole containing analogues of the marine natural product MRSA pyruvate kinase (PK) inhibitor, 6-bromodeoxytopsenin. The synthetic analogues showed moderate activity compared to the marine natural product against MRSA PK, an evolutionary conserved hub protein critical for bacterial survival. Our synthesis, via a Hantzsch thiazole condensation of α-oxo-1H-indole-3-thioacetamides with 2-bromo-1-(1H-indol-3-yl)-ethanones provided several challenges.
- Full Text:
- Date Issued: 2014
Synthesis and MRSA PK inhibitory activity of thiazole containing deoxytopsentin analogues
- Veale, Clinton G L, Lobb, Kevin A, Zoraghi, Roya, Morrison, James P, Reiner, Neil E, Andersen, Raymond J, Davies-Coleman, Michael T
- Authors: Veale, Clinton G L , Lobb, Kevin A , Zoraghi, Roya , Morrison, James P , Reiner, Neil E , Andersen, Raymond J , Davies-Coleman, Michael T
- Date: 2014
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/448028 , vital:74692 , xlink:href="https://doi.org/10.1016/j.tet.2014.09.007"
- Description: The public health care crisis caused by the emergence of drug resistant bacterial strains, e.g., methicillin resistant Staphylococcus aureus (MRSA) has underlined the urgent need to accelerate the discovery of new chemical entities active against antibiotic resistant bacteria. We report here the synthesis of a series thiazole containing deoxytopsentin analogues, which show moderate activity against a target MRSA pyruvate kinase enzyme: an evolutionary conserved hub protein critical for bacterial survival. A Hantzsch thiazole coupling between a-oxo-1H-indole-3-thioacetamides and 2-bromo-1-(1H-indol-3-yl)-ethanones provided facile access to the thiazole containing deoxytopsentin compounds.
- Full Text:
- Date Issued: 2014
- Authors: Veale, Clinton G L , Lobb, Kevin A , Zoraghi, Roya , Morrison, James P , Reiner, Neil E , Andersen, Raymond J , Davies-Coleman, Michael T
- Date: 2014
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/448028 , vital:74692 , xlink:href="https://doi.org/10.1016/j.tet.2014.09.007"
- Description: The public health care crisis caused by the emergence of drug resistant bacterial strains, e.g., methicillin resistant Staphylococcus aureus (MRSA) has underlined the urgent need to accelerate the discovery of new chemical entities active against antibiotic resistant bacteria. We report here the synthesis of a series thiazole containing deoxytopsentin analogues, which show moderate activity against a target MRSA pyruvate kinase enzyme: an evolutionary conserved hub protein critical for bacterial survival. A Hantzsch thiazole coupling between a-oxo-1H-indole-3-thioacetamides and 2-bromo-1-(1H-indol-3-yl)-ethanones provided facile access to the thiazole containing deoxytopsentin compounds.
- Full Text:
- Date Issued: 2014
Cytotoxicity of lapachol, β-lapachone and related synthetic 1, 4-naphthoquinones against oesophageal cancer cells:
- Sunassee, Suthananda N, Veale, Clinton G L, Shunmoogam-Gounden, Nelusha, Osoniyi, Omalaja, Hendricks, Denver T, Caira, Mino R, De la Mare, Jo-Anne, Edkins, Adrienne L, Pinto, Antônio V, Da Silva Junior, Eufrânio N, Davies-Coleman, Michael T
- Authors: Sunassee, Suthananda N , Veale, Clinton G L , Shunmoogam-Gounden, Nelusha , Osoniyi, Omalaja , Hendricks, Denver T , Caira, Mino R , De la Mare, Jo-Anne , Edkins, Adrienne L , Pinto, Antônio V , Da Silva Junior, Eufrânio N , Davies-Coleman, Michael T
- Date: 2013
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/165207 , vital:41218 , DOI: 10.1016/j.ejmech.2012.12.048
- Description: Naphthoquinones have been found to have a wide range of biological activities, including cytotoxicity to cancer cells. The secondary metabolites lapachol, α- and β-lapachone and a series of 25 related synthetic 1,4-naphthoquinones were screened against the oesophageal cancer cell line (WHCO1). Most of the compounds exhibited enhanced cytotoxicity (IC50 1.6–11.7 μM) compared to the current drug of choice cisplatin (IC50 = 16.5 μM).
- Full Text:
- Date Issued: 2013
- Authors: Sunassee, Suthananda N , Veale, Clinton G L , Shunmoogam-Gounden, Nelusha , Osoniyi, Omalaja , Hendricks, Denver T , Caira, Mino R , De la Mare, Jo-Anne , Edkins, Adrienne L , Pinto, Antônio V , Da Silva Junior, Eufrânio N , Davies-Coleman, Michael T
- Date: 2013
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/165207 , vital:41218 , DOI: 10.1016/j.ejmech.2012.12.048
- Description: Naphthoquinones have been found to have a wide range of biological activities, including cytotoxicity to cancer cells. The secondary metabolites lapachol, α- and β-lapachone and a series of 25 related synthetic 1,4-naphthoquinones were screened against the oesophageal cancer cell line (WHCO1). Most of the compounds exhibited enhanced cytotoxicity (IC50 1.6–11.7 μM) compared to the current drug of choice cisplatin (IC50 = 16.5 μM).
- Full Text:
- Date Issued: 2013
Expanding the SAR of Nontoxic Antiplasmodial Indolyl-3-ethanone Ethers and Thioethers.
- Lunga, Mayibongwe J, Chisango, Ruramai Lissa, Weyers, Carli, Isaacs, Michelle, Taylor, Dale, Edkins, Adrienne L, Khanye, Setshaba D, Hoppe, Heinrich C, Veale, Clinton G L
- Authors: Lunga, Mayibongwe J , Chisango, Ruramai Lissa , Weyers, Carli , Isaacs, Michelle , Taylor, Dale , Edkins, Adrienne L , Khanye, Setshaba D , Hoppe, Heinrich C , Veale, Clinton G L
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/122908 , vital:35370 , https://doi.org/10.1002/cmdc.201800235
- Description: Despite major strides in reducing Plasmodium falciparum infections, this parasite still accounts for roughly half a million annual deaths. This problem is compounded by the decreased efficacy of artemisinin combination therapies. Therefore, the development and optimisation of novel antimalarial chemotypes is critical. In this study, we describe our strategic approach to optimise a class of previously reported antimalarials, resulting in the discovery of 1‐(5‐chloro‐1H‐indol‐3‐yl)‐2‐[(4‐cyanophenyl)thio]ethanone (13) and 1‐(5‐chloro‐1H‐indol‐3‐yl)‐2‐[(4‐nitrophenyl)thio]ethanone (14), whose activity was equipotent to that of chloroquine against the P. falciparum 3D7 strain. Furthermore, these compounds were found to be nontoxic to HeLa cells as well as being non‐haemolytic to uninfected red blood cells. Intriguingly, several of our most promising compounds were found to be less active against the isogenic NF54 strain, highlighting possible issues with long‐term dependability of malarial strains. Finally compound 14 displayed similar activity against both the NF54 and K1 strains, suggesting that it inhibits a pathway that is uncompromised by K1 resistance.
- Full Text:
- Authors: Lunga, Mayibongwe J , Chisango, Ruramai Lissa , Weyers, Carli , Isaacs, Michelle , Taylor, Dale , Edkins, Adrienne L , Khanye, Setshaba D , Hoppe, Heinrich C , Veale, Clinton G L
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/122908 , vital:35370 , https://doi.org/10.1002/cmdc.201800235
- Description: Despite major strides in reducing Plasmodium falciparum infections, this parasite still accounts for roughly half a million annual deaths. This problem is compounded by the decreased efficacy of artemisinin combination therapies. Therefore, the development and optimisation of novel antimalarial chemotypes is critical. In this study, we describe our strategic approach to optimise a class of previously reported antimalarials, resulting in the discovery of 1‐(5‐chloro‐1H‐indol‐3‐yl)‐2‐[(4‐cyanophenyl)thio]ethanone (13) and 1‐(5‐chloro‐1H‐indol‐3‐yl)‐2‐[(4‐nitrophenyl)thio]ethanone (14), whose activity was equipotent to that of chloroquine against the P. falciparum 3D7 strain. Furthermore, these compounds were found to be nontoxic to HeLa cells as well as being non‐haemolytic to uninfected red blood cells. Intriguingly, several of our most promising compounds were found to be less active against the isogenic NF54 strain, highlighting possible issues with long‐term dependability of malarial strains. Finally compound 14 displayed similar activity against both the NF54 and K1 strains, suggesting that it inhibits a pathway that is uncompromised by K1 resistance.
- Full Text:
- «
- ‹
- 1
- ›
- »