Overexpression, Purification and Characterisation of the Plasmodium falciparum Hsp70-z (PfHsp70-z) Protein
- Zininga, Tawanda, Achilonu, Ikechukwu, Hoppe, Heinrich C, Prinsloo, Earl, Dirr, Heinrich W, Shonhai, Addmore
- Authors: Zininga, Tawanda , Achilonu, Ikechukwu , Hoppe, Heinrich C , Prinsloo, Earl , Dirr, Heinrich W , Shonhai, Addmore
- Date: 2015
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/431719 , vital:72799 , xlink:href="https://doi.org/10.1371/journal.pone.0129445"
- Description: Six Hsp70-like genes are represented on the genome of Plasmodium falciparum. Of these two occur in the cytosol: P. falciparum Hsp70-z (PfHsp70-z) and PfHsp70-1. PfHsp70-1 is a well characterised canonical Hsp70 that facilitates protein quality control and is crucial for the development of malaria parasites. There is very little known about PfHsp70-z. However, PfHsp70-z is known to be essential and is implicated in suppressing aggregation of asparagine-rich proteins of P. falciparum. In addition, its expression at the clinical stage of malaria correlates with disease prognosis. Based on structural evidence PfHsp70-z belongs to the Hsp110 family of proteins. Since Hsp110 proteins have been described as nucleotide exchange factors (NEFs) of their canonical Hsp70 counterparts, it has been speculated that PfHsp70-z may serve as a NEF of PfHsp70-1. In the current study, P. falciparum cells cultured in vitro were subjected to heat stress, triggering the enhanced expression of PfHsp70-z. Biochemical assays conducted using recombinant PfHsp70-z protein demonstrated that the protein is heat stable and possesses ATPase activity. Furthermore, we observed that PfHsp70-z is capable of self-association. The structural-functional features of PfHsp70-z provide further evidence for its role as a chaperone and possible nucleotide exchange factor of PfHsp70-1.
- Full Text:
- Date Issued: 2015
- Authors: Zininga, Tawanda , Achilonu, Ikechukwu , Hoppe, Heinrich C , Prinsloo, Earl , Dirr, Heinrich W , Shonhai, Addmore
- Date: 2015
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/431719 , vital:72799 , xlink:href="https://doi.org/10.1371/journal.pone.0129445"
- Description: Six Hsp70-like genes are represented on the genome of Plasmodium falciparum. Of these two occur in the cytosol: P. falciparum Hsp70-z (PfHsp70-z) and PfHsp70-1. PfHsp70-1 is a well characterised canonical Hsp70 that facilitates protein quality control and is crucial for the development of malaria parasites. There is very little known about PfHsp70-z. However, PfHsp70-z is known to be essential and is implicated in suppressing aggregation of asparagine-rich proteins of P. falciparum. In addition, its expression at the clinical stage of malaria correlates with disease prognosis. Based on structural evidence PfHsp70-z belongs to the Hsp110 family of proteins. Since Hsp110 proteins have been described as nucleotide exchange factors (NEFs) of their canonical Hsp70 counterparts, it has been speculated that PfHsp70-z may serve as a NEF of PfHsp70-1. In the current study, P. falciparum cells cultured in vitro were subjected to heat stress, triggering the enhanced expression of PfHsp70-z. Biochemical assays conducted using recombinant PfHsp70-z protein demonstrated that the protein is heat stable and possesses ATPase activity. Furthermore, we observed that PfHsp70-z is capable of self-association. The structural-functional features of PfHsp70-z provide further evidence for its role as a chaperone and possible nucleotide exchange factor of PfHsp70-1.
- Full Text:
- Date Issued: 2015
Plasmodium falciparum Hop (PfHop) interacts with the Hsp70 chaperone in a nucleotide-dependent fashion and exhibits ligand selectivity
- Zininga, Tawanda, Makumire, Stanley, Gitau, Grace W, Njunge, James M, Pooe, Ofentse J, Klimek, Hanna, Scheurr, Robina, Raifer, Hartmann, Prinsloo, Earl, Przyborski, Jude M, Hoppe, Heinrich C, Shonhai, Addmore
- Authors: Zininga, Tawanda , Makumire, Stanley , Gitau, Grace W , Njunge, James M , Pooe, Ofentse J , Klimek, Hanna , Scheurr, Robina , Raifer, Hartmann , Prinsloo, Earl , Przyborski, Jude M , Hoppe, Heinrich C , Shonhai, Addmore
- Date: 2015
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/431752 , vital:72801 , xlink:href=" https://doi.org/10.1371/journal.pone.0135326"
- Description: Heat shock proteins (Hsps) play an important role in the development and pathogenicity of malaria parasites. One of the most prominent functions of Hsps is to facilitate the folding of other proteins. Hsps are thought to play a crucial role when malaria parasites invade their host cells and during their subsequent development in hepatocytes and red blood cells. It is thought that Hsps maintain proteostasis under the unfavourable conditions that malaria parasites encounter in the host environment. Although heat shock protein 70 (Hsp70) is capable of independent folding of some proteins, its functional cooperation with heat shock protein 90 (Hsp90) facilitates folding of some proteins such as kinases and steroid hormone receptors into their fully functional forms. The cooperation of Hsp70 and Hsp90 occurs through an adaptor protein called Hsp70-Hsp90 organising protein (Hop). We previously characterised the Hop protein from Plasmodium falciparum (PfHop). We observed that the protein co-localised with the cytosol-localised chaperones, PfHsp70-1 and PfHsp90 at the blood stages of the malaria parasite. In the current study, we demonstrated that PfHop is a stress-inducible protein. We further explored the direct interaction between PfHop and PfHsp70-1 using far Western and surface plasmon resonance (SPR) analyses.
- Full Text:
- Date Issued: 2015
- Authors: Zininga, Tawanda , Makumire, Stanley , Gitau, Grace W , Njunge, James M , Pooe, Ofentse J , Klimek, Hanna , Scheurr, Robina , Raifer, Hartmann , Prinsloo, Earl , Przyborski, Jude M , Hoppe, Heinrich C , Shonhai, Addmore
- Date: 2015
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/431752 , vital:72801 , xlink:href=" https://doi.org/10.1371/journal.pone.0135326"
- Description: Heat shock proteins (Hsps) play an important role in the development and pathogenicity of malaria parasites. One of the most prominent functions of Hsps is to facilitate the folding of other proteins. Hsps are thought to play a crucial role when malaria parasites invade their host cells and during their subsequent development in hepatocytes and red blood cells. It is thought that Hsps maintain proteostasis under the unfavourable conditions that malaria parasites encounter in the host environment. Although heat shock protein 70 (Hsp70) is capable of independent folding of some proteins, its functional cooperation with heat shock protein 90 (Hsp90) facilitates folding of some proteins such as kinases and steroid hormone receptors into their fully functional forms. The cooperation of Hsp70 and Hsp90 occurs through an adaptor protein called Hsp70-Hsp90 organising protein (Hop). We previously characterised the Hop protein from Plasmodium falciparum (PfHop). We observed that the protein co-localised with the cytosol-localised chaperones, PfHsp70-1 and PfHsp90 at the blood stages of the malaria parasite. In the current study, we demonstrated that PfHop is a stress-inducible protein. We further explored the direct interaction between PfHop and PfHsp70-1 using far Western and surface plasmon resonance (SPR) analyses.
- Full Text:
- Date Issued: 2015
- «
- ‹
- 1
- ›
- »