An in vitro evaluation of the anti-breast cancer activity of Nigella sativa extracts and its bioactive compound in combination with curcumin
- Authors: Botha, Susanna Gertruida
- Date: 2024-04
- Subjects: Herbs -- Therapeutic use , Radiation-protective agents , Breast -- Cancer -- Treatment
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10948/63639 , vital:73571
- Description: Breast cancer constitutes 23% of all cancers in South African females. Curcumin and Nigella sativa have anti-cancer, anti-metastatic and antioxidant-properties and may be effective against breast cancer. This study focused on the effect of N. sativa extracts or thymoquinone and curcumin, individually and in combination, on breast cancer cells. An MTT assay showed that curcumin reduced cell viability by 50% (IC50) at 18 ± 2.63 μg/mL and thymoquinone (TQ) at 5 ± 0.95 μg/mL against the MDA-MB-231 cells. The IC50 values for curcumin and TQ were 35 ± 6.98 μg/mL and 4 ± 0.96 μg/mL against the MCF-7 cells, respectively. The IC50 value for the NSBE was determined to be 350 ± 55 μg/mL. The IC50 value of NSAE did not fall within the selected concentration range. Synergism was noted for combinations of NSBE with curcumin, and combinations of TQ with curcumin, against both MCF-7 and MDA-MB-231 cells. Two synergistic combinations per treatment per cell line, as determined by the combination index analysis, were chosen for further investigation. The combinations and individual treatments tested against the MCF-10A cells, were not significant, except for NSBE80:CURC20 combination. Curcumin had the most significant anti-oxidant activity; however, no link was noted between the anti-oxidant activity and the cytotoxicity of the combinations. The combination treatments induced apoptosis more effectively than the individual treatments. Caspase-3 dependent apoptosis was noted for NSBE10:CURC90 and TQ80:CURC20 combinations against the MDA-MB-231 cells, and the TQ60:CURC40 combination against the MCF-7 cells. The individual and combined treatments effectively reduced MDA-MB-231 cell adhesion to fibronectin, but not all reduced the cell adhesion to laminin. Based on these results, the combinations of curcumin with TQ or NSBE, have promising anticancer benefits against breast cancer. , Thesis (MSc) -- Faculty of Science, School of Biomolecular & Chemical Sciences, 2024
- Full Text:
- Date Issued: 2024-04
- Authors: Botha, Susanna Gertruida
- Date: 2024-04
- Subjects: Herbs -- Therapeutic use , Radiation-protective agents , Breast -- Cancer -- Treatment
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10948/63639 , vital:73571
- Description: Breast cancer constitutes 23% of all cancers in South African females. Curcumin and Nigella sativa have anti-cancer, anti-metastatic and antioxidant-properties and may be effective against breast cancer. This study focused on the effect of N. sativa extracts or thymoquinone and curcumin, individually and in combination, on breast cancer cells. An MTT assay showed that curcumin reduced cell viability by 50% (IC50) at 18 ± 2.63 μg/mL and thymoquinone (TQ) at 5 ± 0.95 μg/mL against the MDA-MB-231 cells. The IC50 values for curcumin and TQ were 35 ± 6.98 μg/mL and 4 ± 0.96 μg/mL against the MCF-7 cells, respectively. The IC50 value for the NSBE was determined to be 350 ± 55 μg/mL. The IC50 value of NSAE did not fall within the selected concentration range. Synergism was noted for combinations of NSBE with curcumin, and combinations of TQ with curcumin, against both MCF-7 and MDA-MB-231 cells. Two synergistic combinations per treatment per cell line, as determined by the combination index analysis, were chosen for further investigation. The combinations and individual treatments tested against the MCF-10A cells, were not significant, except for NSBE80:CURC20 combination. Curcumin had the most significant anti-oxidant activity; however, no link was noted between the anti-oxidant activity and the cytotoxicity of the combinations. The combination treatments induced apoptosis more effectively than the individual treatments. Caspase-3 dependent apoptosis was noted for NSBE10:CURC90 and TQ80:CURC20 combinations against the MDA-MB-231 cells, and the TQ60:CURC40 combination against the MCF-7 cells. The individual and combined treatments effectively reduced MDA-MB-231 cell adhesion to fibronectin, but not all reduced the cell adhesion to laminin. Based on these results, the combinations of curcumin with TQ or NSBE, have promising anticancer benefits against breast cancer. , Thesis (MSc) -- Faculty of Science, School of Biomolecular & Chemical Sciences, 2024
- Full Text:
- Date Issued: 2024-04
The synthesis and breast cancer inhibitory activity of cinnamic acid analogues based on the halogenated monoterpene pharmacophore
- Authors: Chiwakata, Maynard Tendai
- Date: 2012
- Subjects: Halocarbons , Cancer -- Treatment , Breast -- Cancer -- Treatment
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3866 , http://hdl.handle.net/10962/d1016129
- Description: Breast cancer is one of the leading causes of death, with mortality rate estimates of 465 000 deaths per annum. It is estimated that 1.3 million women are diagnosed with the disease each year especially in the developing countries. Current chemotherapy relies on the use of high doses of non-specific toxic agents that possess adverse side effects and compromise patient’s compliance and adherence to treatment. Paclitaxel, one of the common drugs used in breast cancer chemotherapy results in sensory and motor neuropathy, whilst hormonal therapy e.g. Herceptin causes severe cardiovascular, gastrointestinal and cutaneous side effects. There has been a demand in developing newer cancer agents that demonstrate selective cytoxicity with minimal effect on normal body tissue. Numerous studies have shown that marine organisms produce a wide range of halogenated compounds that possess cytotoxic properties, and hence can be a source of new drug hits or leads for cancer therapy. Halomon, a polyhalogenated monoterpene from Portieria hornemannii, displayed interesting activity against brain, renal and lung cancer tumours with selective/differential cytotoxicity. This inspired us to focus our project on halogenated monoterpenes isolated from the same Rhodophyta class as P. hornemannii but with particular attention to Plocamium species. Several metabolites have been isolated from P. cornutum, P. corallorhiza and P. suhrii that possess interesting cytotoxicities against a breast cancer cell line (MCF7) and an oesophageal cancer line (WHCO1). The aim of the project was therefore centred at isolating target compounds for preliminary structure-activity studies against a breast cancer cell line, and use this information to synthesize a series of analogues that are more stable than the natural products and yet as active using a fragment-based type approach to map out pharmacophoric elements. Five metabolites were isolated from P. cornutum and five from P. corallorhiza. Cell-based assays were conducted using an MTT assay kit against MCF7 and MDA-MB-231 breast cancer cell lines and (1E,3E,5S,6R)-1,5,6-trichloro-2-(dichloromethyl)-6-methylocta-1,3,7-triene, isolated from P. cornutum was the most active with IC50 values of 3.0 μM and 6.15 μM respectively. Introduction of a terminal aromatic ring to enhance stability, together with varying substituents (H, CH3, CF3, Br, CN, CHO, CHCl2) on position 7 of the molecule, gave rise to a series of cinnamate ester derivatives inspired by (1E,3E,5S,6R)-1,5,6-trichloro-2-(dichloromethyl)-6-methylocta-1,3,7-triene. The analogues were synthesized from their benzaldehyde precursors via Aldol condensation, esterification and Wittig reactions. Their carboxylic acid counterparts were synthesized by hydrolysis of the parent esters in an attempt to promote water solubilities of the analogues. Biological activity assays were then conducted with the cinnamate analogues against the MDA-MB-231 breast cancer cell line using an MTT assay kit. Ester derivatives with -CHO and -CHCl2 functionalities had IC50 values of 43.45 μM and 100.01 μM respectively whilst the other ester derivatives were inactive. It was concluded that either an aldehyde (-CHO) or gem-dichlorides (-CHCl2) is specifically required for cytotoxic activity to be observed. None of the carboxylic acids were active which could have been due to failure of the compounds to enter the breast cancer cells and reach the target site because of their polar nature. Compounds with -CHO and -CHCl2 functionalities were therefore selected for future SARs studies.
- Full Text:
- Date Issued: 2012
- Authors: Chiwakata, Maynard Tendai
- Date: 2012
- Subjects: Halocarbons , Cancer -- Treatment , Breast -- Cancer -- Treatment
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3866 , http://hdl.handle.net/10962/d1016129
- Description: Breast cancer is one of the leading causes of death, with mortality rate estimates of 465 000 deaths per annum. It is estimated that 1.3 million women are diagnosed with the disease each year especially in the developing countries. Current chemotherapy relies on the use of high doses of non-specific toxic agents that possess adverse side effects and compromise patient’s compliance and adherence to treatment. Paclitaxel, one of the common drugs used in breast cancer chemotherapy results in sensory and motor neuropathy, whilst hormonal therapy e.g. Herceptin causes severe cardiovascular, gastrointestinal and cutaneous side effects. There has been a demand in developing newer cancer agents that demonstrate selective cytoxicity with minimal effect on normal body tissue. Numerous studies have shown that marine organisms produce a wide range of halogenated compounds that possess cytotoxic properties, and hence can be a source of new drug hits or leads for cancer therapy. Halomon, a polyhalogenated monoterpene from Portieria hornemannii, displayed interesting activity against brain, renal and lung cancer tumours with selective/differential cytotoxicity. This inspired us to focus our project on halogenated monoterpenes isolated from the same Rhodophyta class as P. hornemannii but with particular attention to Plocamium species. Several metabolites have been isolated from P. cornutum, P. corallorhiza and P. suhrii that possess interesting cytotoxicities against a breast cancer cell line (MCF7) and an oesophageal cancer line (WHCO1). The aim of the project was therefore centred at isolating target compounds for preliminary structure-activity studies against a breast cancer cell line, and use this information to synthesize a series of analogues that are more stable than the natural products and yet as active using a fragment-based type approach to map out pharmacophoric elements. Five metabolites were isolated from P. cornutum and five from P. corallorhiza. Cell-based assays were conducted using an MTT assay kit against MCF7 and MDA-MB-231 breast cancer cell lines and (1E,3E,5S,6R)-1,5,6-trichloro-2-(dichloromethyl)-6-methylocta-1,3,7-triene, isolated from P. cornutum was the most active with IC50 values of 3.0 μM and 6.15 μM respectively. Introduction of a terminal aromatic ring to enhance stability, together with varying substituents (H, CH3, CF3, Br, CN, CHO, CHCl2) on position 7 of the molecule, gave rise to a series of cinnamate ester derivatives inspired by (1E,3E,5S,6R)-1,5,6-trichloro-2-(dichloromethyl)-6-methylocta-1,3,7-triene. The analogues were synthesized from their benzaldehyde precursors via Aldol condensation, esterification and Wittig reactions. Their carboxylic acid counterparts were synthesized by hydrolysis of the parent esters in an attempt to promote water solubilities of the analogues. Biological activity assays were then conducted with the cinnamate analogues against the MDA-MB-231 breast cancer cell line using an MTT assay kit. Ester derivatives with -CHO and -CHCl2 functionalities had IC50 values of 43.45 μM and 100.01 μM respectively whilst the other ester derivatives were inactive. It was concluded that either an aldehyde (-CHO) or gem-dichlorides (-CHCl2) is specifically required for cytotoxic activity to be observed. None of the carboxylic acids were active which could have been due to failure of the compounds to enter the breast cancer cells and reach the target site because of their polar nature. Compounds with -CHO and -CHCl2 functionalities were therefore selected for future SARs studies.
- Full Text:
- Date Issued: 2012
Analysis of the anti-cancer activity of novel indigenous algal compounds in breast cancer: towards the development of a model for screening anti-cancer stem cell activity
- Authors: Lawson, Jessica Clair
- Date: 2010
- Subjects: Breast -- Cancer , Breast -- Cancer -- Chemotherapy , Breast -- Cancer -- Treatment , Red algae , Brown algae , Algae -- Biotechnology
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3925 , http://hdl.handle.net/10962/d1003984 , Breast -- Cancer , Breast -- Cancer -- Chemotherapy , Breast -- Cancer -- Treatment , Red algae , Brown algae , Algae -- Biotechnology
- Description: Breast cancer, the most common malignancy diagnosed in women, is one of the leading causes of death in women worldwide. In South Africa only 32% of women diagnosed with advanced breast cancer survive more than five years. The search for new chemotherapeutic agents capable of effectively treating breast cancer is therefore essential. Recent evidence supporting the cancer stem cell theory of cancer development for breast cancer challenges the current theories of cancer development and hence treatment. Cancer stem cells are a small subpopulation of tumour cells that possess properties of both cancer cells and stem cells and are believed to be the tumour-initiating population of many cancers. Cancer stem cells are inherently resistant to many chemotherapeutic agents and in this way have been associated with repopulation of tumours after chemotherapy. This phenomenon is proposed as a possible mechanism for cancer relapse after treatment. Cancer stem cells have also been implicated in metastasis, the major cause of mortality in cancer patients. Therefore, any treatment that is capable of targeting and removing breast cancer stem cells may have the theoretical potential to effectively treat breast cancer. However, there are currently no such treatments available for clinical use. We were provided access to a library of novel indigenous small molecules isolated from red and brown algae found off the Eastern Cape of South Africa. The aim of this project was to analyse the anti-cancer and anti-cancer stem cell properties of the compounds in this library and to identify „hit‟ compounds which could form the basis for future development into new anti-cancer drugs. Ten novel compounds of algal origin were tested for cytotoxicity, by determining their ability to inhibit the growth of MCF12A breast epithelial cells and MCF7 breast cancer cells using the colorimetric MTT [(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] cell proliferation assay. All but one of the compounds tested exhibited cytotoxicity towards the MCF7 cancer cell line, with IC50 values (the concentration of the compound that leads to a 50% inhibition in cell growth) of between 3 μM and 90 μM. The chemotherapeutic drug paclitaxel was used as a positive control. Four of the compounds (RUMB-001, RUMB-002, RUMB-007 and RUMB-010/saragaquinoic acid) were significantly more toxic to the MCF7 cancer cell line, than the „normal‟ MCF12A breast cells and were selected as priority compounds for further analyses. In addition, two other compounds were selected as priority compounds, one highly cytotoxic towards both MCF12A and MCF7 cell lines (RUMB-015) and one which was non toxic to either cell line (RUMB-017/018). Preliminary studies into the mechanism of cytotoxicity using Western blot analysis for poly (ADP-ribose) polymerase (PARP) cleavage and Hoechst 33342 immunostaining in MCF-7 cells were largely unsuccessful. The Hoechst 33342 immunostaining assay did provide tentative evidence that selected priority compounds were capable of inducing apoptosis, although these assays will need to be repeated using a less subjective assay to confirm the results. The priority compounds were subsequently investigated for their cytotoxic effect on the cancer stem cell-enriched side population in MCF7 cells. The ability of the priority compounds to selectively target the cancer stem cell containing side population was assessed using two complementary flow cytometry-based techniques – namely the Hoechst 33342-exclusion assay, and fluorescent immunostaining for the expression of the putative cancer stem cell marker, ABCG2+. The ABCG2+ staining assay was a novel technique developed during the course of this study. It remains to be fully validated, but it may provide a new and reliable way to identify and analyse cancer stem cell containing side population cells. The MCF7 cells were treated with the compounds and the proportion of putative cancer stem cells compared with the size of the population in untreated cells was assessed. Three compounds (RUMB-010, RUMB-015 and RUMB-017/018) capable of reducing the proportion of side population cells within the MCF7 cell line were identified. Taking these data together, we identified two potential „hit‟ compounds which should be prioritised for future research. These are compounds RUMB-010/sargaquinoic acid and RUMB-017/018. RUMB-010 is of interest as it was shown to target the putative cancer stem cell population, in addition to the bulk MCF7 tumour line, but was relatively less toxic to the „normal‟ MCF12A cell line. RUMB-017/018 is of interest due to the ability to selectively target the cancer stem cell enriched side population, while having little effect on the normal (MCF12A) or bulk tumour (MCF7) cell lines tested. These compounds will be important as „hit‟ compounds for drug development and as tool compounds to study cancer and cancer stem cell biology.
- Full Text:
- Date Issued: 2010
- Authors: Lawson, Jessica Clair
- Date: 2010
- Subjects: Breast -- Cancer , Breast -- Cancer -- Chemotherapy , Breast -- Cancer -- Treatment , Red algae , Brown algae , Algae -- Biotechnology
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3925 , http://hdl.handle.net/10962/d1003984 , Breast -- Cancer , Breast -- Cancer -- Chemotherapy , Breast -- Cancer -- Treatment , Red algae , Brown algae , Algae -- Biotechnology
- Description: Breast cancer, the most common malignancy diagnosed in women, is one of the leading causes of death in women worldwide. In South Africa only 32% of women diagnosed with advanced breast cancer survive more than five years. The search for new chemotherapeutic agents capable of effectively treating breast cancer is therefore essential. Recent evidence supporting the cancer stem cell theory of cancer development for breast cancer challenges the current theories of cancer development and hence treatment. Cancer stem cells are a small subpopulation of tumour cells that possess properties of both cancer cells and stem cells and are believed to be the tumour-initiating population of many cancers. Cancer stem cells are inherently resistant to many chemotherapeutic agents and in this way have been associated with repopulation of tumours after chemotherapy. This phenomenon is proposed as a possible mechanism for cancer relapse after treatment. Cancer stem cells have also been implicated in metastasis, the major cause of mortality in cancer patients. Therefore, any treatment that is capable of targeting and removing breast cancer stem cells may have the theoretical potential to effectively treat breast cancer. However, there are currently no such treatments available for clinical use. We were provided access to a library of novel indigenous small molecules isolated from red and brown algae found off the Eastern Cape of South Africa. The aim of this project was to analyse the anti-cancer and anti-cancer stem cell properties of the compounds in this library and to identify „hit‟ compounds which could form the basis for future development into new anti-cancer drugs. Ten novel compounds of algal origin were tested for cytotoxicity, by determining their ability to inhibit the growth of MCF12A breast epithelial cells and MCF7 breast cancer cells using the colorimetric MTT [(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] cell proliferation assay. All but one of the compounds tested exhibited cytotoxicity towards the MCF7 cancer cell line, with IC50 values (the concentration of the compound that leads to a 50% inhibition in cell growth) of between 3 μM and 90 μM. The chemotherapeutic drug paclitaxel was used as a positive control. Four of the compounds (RUMB-001, RUMB-002, RUMB-007 and RUMB-010/saragaquinoic acid) were significantly more toxic to the MCF7 cancer cell line, than the „normal‟ MCF12A breast cells and were selected as priority compounds for further analyses. In addition, two other compounds were selected as priority compounds, one highly cytotoxic towards both MCF12A and MCF7 cell lines (RUMB-015) and one which was non toxic to either cell line (RUMB-017/018). Preliminary studies into the mechanism of cytotoxicity using Western blot analysis for poly (ADP-ribose) polymerase (PARP) cleavage and Hoechst 33342 immunostaining in MCF-7 cells were largely unsuccessful. The Hoechst 33342 immunostaining assay did provide tentative evidence that selected priority compounds were capable of inducing apoptosis, although these assays will need to be repeated using a less subjective assay to confirm the results. The priority compounds were subsequently investigated for their cytotoxic effect on the cancer stem cell-enriched side population in MCF7 cells. The ability of the priority compounds to selectively target the cancer stem cell containing side population was assessed using two complementary flow cytometry-based techniques – namely the Hoechst 33342-exclusion assay, and fluorescent immunostaining for the expression of the putative cancer stem cell marker, ABCG2+. The ABCG2+ staining assay was a novel technique developed during the course of this study. It remains to be fully validated, but it may provide a new and reliable way to identify and analyse cancer stem cell containing side population cells. The MCF7 cells were treated with the compounds and the proportion of putative cancer stem cells compared with the size of the population in untreated cells was assessed. Three compounds (RUMB-010, RUMB-015 and RUMB-017/018) capable of reducing the proportion of side population cells within the MCF7 cell line were identified. Taking these data together, we identified two potential „hit‟ compounds which should be prioritised for future research. These are compounds RUMB-010/sargaquinoic acid and RUMB-017/018. RUMB-010 is of interest as it was shown to target the putative cancer stem cell population, in addition to the bulk MCF7 tumour line, but was relatively less toxic to the „normal‟ MCF12A cell line. RUMB-017/018 is of interest due to the ability to selectively target the cancer stem cell enriched side population, while having little effect on the normal (MCF12A) or bulk tumour (MCF7) cell lines tested. These compounds will be important as „hit‟ compounds for drug development and as tool compounds to study cancer and cancer stem cell biology.
- Full Text:
- Date Issued: 2010
- «
- ‹
- 1
- ›
- »