Phytoplankton and aquatic macroinvertebrate assemblages from coastal and inland lakes of South Africa
- Authors: Nkibi, Esethu
- Date: 2023-10-13
- Subjects: Aquatic biodiversity South Africa , Indicators (Biology) , Lakes South Africa , Physicochemical process , Salinity , Phytoplankton , Aquatic macroinvertebrates
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/424435 , vital:72153
- Description: Freshwater lakes are generally defined as permanent natural standing water bodies, with some of them having a direct and indirect connection with groundwater, rivers, and the ocean. Freshwater lakes provide essential socio-economic and ecological goods and services including recreation, aesthetic, support aquatic biodiversity, food in a form of fisheries and water for domestic use. Given their critical role in sustainability in providing socio-economic services, freshwater lakes are among the most threatened ecosystems globally due to intense human impacts over the last decades. South Africa has limited freshwater lakes, which according to the National Biodiversity Assessment (NBA 2018), we know little about their current biology except historic aquatic biodiversity studies conducted in the early 1940s. There are no management strategies in place to protect and conserve freshwater lake biodiversity and important ecosystem services. This thesis aims to: (1) produce a biodiversity inventory of phytoplankton and aquatic macroinvertebrate species and, (2) investigate important environmental drivers responsible for phytoplankton and aquatic macroinvertebrate species composition from six South African freshwater lakes. It was hypothesized that the three lake types will show different phytoplankton and aquatic macroinvertebrates species composition attributed by the geographical region (coastal and inland lake) and related physico-chemical parameters. Study sites consisted of two Northern KwaZulu-Natal coastal lakes (hereafter Coastal Lakes, CL) i.e., Lake Sibaya, Lake Mzingazi; two fresh inland lakes (hereafter Fresh Inland Lakes, FIL) i.e., Lake Banagher fresh and Lake Tevrede Se Pan; and two inland salt lakes (hereafter Salt Inland Lakes, SIL) i.e., Lake Banagher salt and Lake Chrissiesmeer, all inland lakes are situated in Mpumalanga province, together with other Pans making up the Mpumalanga Lake District of South Africa. The study sites were categorized based on their geographical position i.e., coastal vs inland and physico-chemical characteristics i.e., the presence and absence of aquatic vegetation, dominate substrate, salinity and different physico-chemical concentration i.e., Temperature, Dissolved Oxygen. Aquatic macroinvertebrates were collected from four littoral zone sites (< 1-meter depth) around each lake, whereas phytoplankton samples were collected from four water column sites (> 5-meters depth) and (0.5-meter depth) from the water surface at each lake during summer and winter season. The results were consistent with our hypothesis that both phytoplankton and aquatic macroinvertebrate species composition were influenced by physico-chemical parameters and that the differences in salinity concentration and aquatic vegetation between CL, FIL, and SIL were the driving factors for phytoplankton and aquatic macroinvertebrate species composition. In summary, one hundred and twenty-two phytoplankton taxa were collected and identified during this study, belonging to seven Phyla which included Chlorophyta, Bacillariophyta, Cyanophyta, Chrysophyta, Dinophyta, Euglenophyta, and Cryptophyta. The most abundant phytoplankton groups were Bacillariophyta and Chlorophyta. Phytoplankton relative taxa abundance, Pielou’s evenness, taxa richness, and Shannon diversity were significantly different between lake types. Aquatic macroinvertebrates, on the other hand, summed up to 10 orders, 67 families, and 80 taxa. The most abundant group were the order Coleoptera, Hemiptera, Odonata, and Gastropoda. Aquatic macroinvertebrate relative taxa abundance, taxa richness, and Shannon diversity were also significantly different between lake types. Aquatic macroinvertebrate relative taxa abundance, Pielous evenness, and Shannon diversity index were not significant between seasons, and only taxa richness was significant. Canonical analysis of principal coordinates (CAP) results further showed unique and distinct phytoplankton and aquatic macroinvertebrates community composition between lake types. The present study provides baseline biodiversity inventory (or species list) for important lake ecosystems biological indicators i.e., phytoplankton and aquatic macroinvertebrates and species composition in relation to lake type for six freshwater lakes in South Africa. Furthermore, the study provides empirical evidence that will inform policy and the development of management strategies for freshwater lakes in South Africa which is currently missing. The current study will also contribute to the next National Biodiversity Assessment Report (2024), concerning the freshwater lakes biological data deficiency noted in the previous NBA (2018) report. The study will also fill up the gaps to better understand species composition in lake systems and how they function which is currently limited. , Thesis (MSc) -- Faculty of Science, Zoology and Entomology, 2023
- Full Text:
- Date Issued: 2023-10-13
- Authors: Nkibi, Esethu
- Date: 2023-10-13
- Subjects: Aquatic biodiversity South Africa , Indicators (Biology) , Lakes South Africa , Physicochemical process , Salinity , Phytoplankton , Aquatic macroinvertebrates
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/424435 , vital:72153
- Description: Freshwater lakes are generally defined as permanent natural standing water bodies, with some of them having a direct and indirect connection with groundwater, rivers, and the ocean. Freshwater lakes provide essential socio-economic and ecological goods and services including recreation, aesthetic, support aquatic biodiversity, food in a form of fisheries and water for domestic use. Given their critical role in sustainability in providing socio-economic services, freshwater lakes are among the most threatened ecosystems globally due to intense human impacts over the last decades. South Africa has limited freshwater lakes, which according to the National Biodiversity Assessment (NBA 2018), we know little about their current biology except historic aquatic biodiversity studies conducted in the early 1940s. There are no management strategies in place to protect and conserve freshwater lake biodiversity and important ecosystem services. This thesis aims to: (1) produce a biodiversity inventory of phytoplankton and aquatic macroinvertebrate species and, (2) investigate important environmental drivers responsible for phytoplankton and aquatic macroinvertebrate species composition from six South African freshwater lakes. It was hypothesized that the three lake types will show different phytoplankton and aquatic macroinvertebrates species composition attributed by the geographical region (coastal and inland lake) and related physico-chemical parameters. Study sites consisted of two Northern KwaZulu-Natal coastal lakes (hereafter Coastal Lakes, CL) i.e., Lake Sibaya, Lake Mzingazi; two fresh inland lakes (hereafter Fresh Inland Lakes, FIL) i.e., Lake Banagher fresh and Lake Tevrede Se Pan; and two inland salt lakes (hereafter Salt Inland Lakes, SIL) i.e., Lake Banagher salt and Lake Chrissiesmeer, all inland lakes are situated in Mpumalanga province, together with other Pans making up the Mpumalanga Lake District of South Africa. The study sites were categorized based on their geographical position i.e., coastal vs inland and physico-chemical characteristics i.e., the presence and absence of aquatic vegetation, dominate substrate, salinity and different physico-chemical concentration i.e., Temperature, Dissolved Oxygen. Aquatic macroinvertebrates were collected from four littoral zone sites (< 1-meter depth) around each lake, whereas phytoplankton samples were collected from four water column sites (> 5-meters depth) and (0.5-meter depth) from the water surface at each lake during summer and winter season. The results were consistent with our hypothesis that both phytoplankton and aquatic macroinvertebrate species composition were influenced by physico-chemical parameters and that the differences in salinity concentration and aquatic vegetation between CL, FIL, and SIL were the driving factors for phytoplankton and aquatic macroinvertebrate species composition. In summary, one hundred and twenty-two phytoplankton taxa were collected and identified during this study, belonging to seven Phyla which included Chlorophyta, Bacillariophyta, Cyanophyta, Chrysophyta, Dinophyta, Euglenophyta, and Cryptophyta. The most abundant phytoplankton groups were Bacillariophyta and Chlorophyta. Phytoplankton relative taxa abundance, Pielou’s evenness, taxa richness, and Shannon diversity were significantly different between lake types. Aquatic macroinvertebrates, on the other hand, summed up to 10 orders, 67 families, and 80 taxa. The most abundant group were the order Coleoptera, Hemiptera, Odonata, and Gastropoda. Aquatic macroinvertebrate relative taxa abundance, taxa richness, and Shannon diversity were also significantly different between lake types. Aquatic macroinvertebrate relative taxa abundance, Pielous evenness, and Shannon diversity index were not significant between seasons, and only taxa richness was significant. Canonical analysis of principal coordinates (CAP) results further showed unique and distinct phytoplankton and aquatic macroinvertebrates community composition between lake types. The present study provides baseline biodiversity inventory (or species list) for important lake ecosystems biological indicators i.e., phytoplankton and aquatic macroinvertebrates and species composition in relation to lake type for six freshwater lakes in South Africa. Furthermore, the study provides empirical evidence that will inform policy and the development of management strategies for freshwater lakes in South Africa which is currently missing. The current study will also contribute to the next National Biodiversity Assessment Report (2024), concerning the freshwater lakes biological data deficiency noted in the previous NBA (2018) report. The study will also fill up the gaps to better understand species composition in lake systems and how they function which is currently limited. , Thesis (MSc) -- Faculty of Science, Zoology and Entomology, 2023
- Full Text:
- Date Issued: 2023-10-13
Phytoplankton associated with mesoscale eddies in the Mozambique Channel
- Authors: O'Reilly, Bevan James
- Date: 2012
- Subjects: Mozambique Channel. , Phytoplankton
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:10622 , http://hdl.handle.net/10948/d1010967 , Mozambique Channel. , Phytoplankton
- Description: The study undertaken was an attempt to provide information on the effect that oceanographic features common in the Mozambique Channel have on primary production. Oligotrophic conditions dominated the Mozambique Channel at the time of sampling and the introduction of nutrients into the euphotic zone by upwelling processes were identified as cyclonic eddies. Differences in physico-chemical variables between surface and F-max across all sites proved to be stronger than the physico-chemical variables between 4 grouped oceanographic features. This was revealed by stronger variations in phytoplankton community structure and chlorophyll a concentration between surface and F-max compared to oceanographic features sampled. One of the hypotheses presented for the study was that diatoms would dominate phytoplankton communities within a cyclonic eddy. This was not the case as the coccolithophorid, Emiliania huxleyi Lohmann (Hay and Mohler 1967) dominated F-max and surface water in the cyclonic eddies and most other sites. Phytoplankton community structure did not differ significantly between the oceanographic features sampled which contradicted another one of hypotheses presented in the study. Chlorophyll a concentration in surface water of the cyclonic eddies was significantly higher than in surface waters within the anti-cyclonic eddy. F-max was not significantly different in phytoplankton biomass between these two system types. The cyclonic eddies and anti-cyclone had similar phytoplankton diversity which did not verify the hypothesis that there would be less phytoplankton species diversity within cyclonic eddies compared to the anti-cyclonic eddy. Phytoplankton community structure differed between F-max (depth at which maximum chlorophyll a is found) and the surface. This phytoplankton community difference was linked to differences in physico-chemical variables between the two depths. The diatoms Thalassionema nitzschioides, Pseudo-nitzschia sp.A, Pseudo-nitzschia sp.B, Thalassiosira sp.C, Thalassiosira sp.E, Bacteriastrum furcatum, Guinardia cylindrus, Nitzschia closterium, Hemiaulus hauckii, and Nitzschia braarudii revealed the only discernible ecological similarity amongst phytoplankton species across all sites and depths. This is important as it revealed that these species were regularly found occupying similar depths and potentially similar physico-chemical ranges in the water column which suggest these diatom species responded to a dominant source of variation. Distribution patterns of species and of ecologically defined groups support the hypothesis that diatom species and assemblages are good indicators of the changing character of an upwelling system. These statements lead to the assumption that the diatom grouping found in this study indicates areas of upwelling where water temperatures are reduced and nutrients are more readily available. One must keep in mind that ordination techniques are only descriptive and no significance is tested. The coccolithophorid D. anthos and the dinoflagellate Phalacroma spp. were noted as being most dissimilar to all other phytoplankton species with regards to their position in the water column and their response to physico-chemical variables. Finally, the dominance of E. huxleyi in the Mozambique Channel during November/December of 2009 reveals the potential vulnerability of phytoplankton in the channel to ocean acidification.
- Full Text:
- Date Issued: 2012
- Authors: O'Reilly, Bevan James
- Date: 2012
- Subjects: Mozambique Channel. , Phytoplankton
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:10622 , http://hdl.handle.net/10948/d1010967 , Mozambique Channel. , Phytoplankton
- Description: The study undertaken was an attempt to provide information on the effect that oceanographic features common in the Mozambique Channel have on primary production. Oligotrophic conditions dominated the Mozambique Channel at the time of sampling and the introduction of nutrients into the euphotic zone by upwelling processes were identified as cyclonic eddies. Differences in physico-chemical variables between surface and F-max across all sites proved to be stronger than the physico-chemical variables between 4 grouped oceanographic features. This was revealed by stronger variations in phytoplankton community structure and chlorophyll a concentration between surface and F-max compared to oceanographic features sampled. One of the hypotheses presented for the study was that diatoms would dominate phytoplankton communities within a cyclonic eddy. This was not the case as the coccolithophorid, Emiliania huxleyi Lohmann (Hay and Mohler 1967) dominated F-max and surface water in the cyclonic eddies and most other sites. Phytoplankton community structure did not differ significantly between the oceanographic features sampled which contradicted another one of hypotheses presented in the study. Chlorophyll a concentration in surface water of the cyclonic eddies was significantly higher than in surface waters within the anti-cyclonic eddy. F-max was not significantly different in phytoplankton biomass between these two system types. The cyclonic eddies and anti-cyclone had similar phytoplankton diversity which did not verify the hypothesis that there would be less phytoplankton species diversity within cyclonic eddies compared to the anti-cyclonic eddy. Phytoplankton community structure differed between F-max (depth at which maximum chlorophyll a is found) and the surface. This phytoplankton community difference was linked to differences in physico-chemical variables between the two depths. The diatoms Thalassionema nitzschioides, Pseudo-nitzschia sp.A, Pseudo-nitzschia sp.B, Thalassiosira sp.C, Thalassiosira sp.E, Bacteriastrum furcatum, Guinardia cylindrus, Nitzschia closterium, Hemiaulus hauckii, and Nitzschia braarudii revealed the only discernible ecological similarity amongst phytoplankton species across all sites and depths. This is important as it revealed that these species were regularly found occupying similar depths and potentially similar physico-chemical ranges in the water column which suggest these diatom species responded to a dominant source of variation. Distribution patterns of species and of ecologically defined groups support the hypothesis that diatom species and assemblages are good indicators of the changing character of an upwelling system. These statements lead to the assumption that the diatom grouping found in this study indicates areas of upwelling where water temperatures are reduced and nutrients are more readily available. One must keep in mind that ordination techniques are only descriptive and no significance is tested. The coccolithophorid D. anthos and the dinoflagellate Phalacroma spp. were noted as being most dissimilar to all other phytoplankton species with regards to their position in the water column and their response to physico-chemical variables. Finally, the dominance of E. huxleyi in the Mozambique Channel during November/December of 2009 reveals the potential vulnerability of phytoplankton in the channel to ocean acidification.
- Full Text:
- Date Issued: 2012
The influence of nutrients on surf-zone phytoplankton
- Authors: Wolmarans, Karien
- Date: 2012
- Subjects: Phytoplankton , Algal blooms , Diatoms
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:10608 , http://hdl.handle.net/10948/d1008080 , Phytoplankton , Algal blooms , Diatoms
- Description: The variability in surf-zone phytoplankton community composition together with variability in nutrient concentrations was studied at seven beaches along the coast near Port Elizabeth, South Africa over a one-year sampling period. The nutrient requirements of selected diatoms and dinoflagellates that co-occur at these beaches were studied. The highest nutrient concentrations were recorded at Brighton beach, with phosphate concentration being substantially higher than standards set out for both South African and European waters. Nitrate, ammonium and silicate concentrations were consistent (low variability) at all beaches. The species composition of beaches without surf diatoms was also not variable (except for King’s Beach – an artificial beach). Maitland beach was the only beach that could be identified as a surf diatom beach due to the presence of Anaulus australis. The surf diatom Anaulus australis was found to be a superior competitor compared to all other species tested: the other surf diatom Asterionellopsis glacialis, and the dinoflagellates Gonyaulax spinifera, Prorocentrum micans, and Scrippsiella trochoidea. Gonyaulax spinifera could possibly outcompete Anaulus australis in systems should nitrate become limiting.
- Full Text:
- Date Issued: 2012
- Authors: Wolmarans, Karien
- Date: 2012
- Subjects: Phytoplankton , Algal blooms , Diatoms
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:10608 , http://hdl.handle.net/10948/d1008080 , Phytoplankton , Algal blooms , Diatoms
- Description: The variability in surf-zone phytoplankton community composition together with variability in nutrient concentrations was studied at seven beaches along the coast near Port Elizabeth, South Africa over a one-year sampling period. The nutrient requirements of selected diatoms and dinoflagellates that co-occur at these beaches were studied. The highest nutrient concentrations were recorded at Brighton beach, with phosphate concentration being substantially higher than standards set out for both South African and European waters. Nitrate, ammonium and silicate concentrations were consistent (low variability) at all beaches. The species composition of beaches without surf diatoms was also not variable (except for King’s Beach – an artificial beach). Maitland beach was the only beach that could be identified as a surf diatom beach due to the presence of Anaulus australis. The surf diatom Anaulus australis was found to be a superior competitor compared to all other species tested: the other surf diatom Asterionellopsis glacialis, and the dinoflagellates Gonyaulax spinifera, Prorocentrum micans, and Scrippsiella trochoidea. Gonyaulax spinifera could possibly outcompete Anaulus australis in systems should nitrate become limiting.
- Full Text:
- Date Issued: 2012
Mesozooplankton community structure in the vicinity of the Prince Edward Islands (Southern Ocean) 37⁰ 50'E, 46⁰ 45'S
- Authors: Hunt, Brian Peter Vere
- Date: 2000
- Subjects: Zooplankton , Zooplankton -- Prince Edward Islands , Phytoplankton , Chlorophyll
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5732 , http://hdl.handle.net/10962/d1005418 , Zooplankton , Zooplankton -- Prince Edward Islands , Phytoplankton , Chlorophyll
- Description: Mesozooplankton community structure in the vicinity of the Prince Edward Islands (PEIs) was investigated during six surveys conducted in late austral summer (April/May), 1996 to 1999. Each year zooplankton samples were collected with a bongo net (300 µm mesh) at stations upstream (west), between and downstream (east) of the islands. Chlorophyll a concentrations were determined fluorometrically, corresponding with each net tow. The positions of the Subantarctic Front (SAF) and the Antarctic Polar Front (APF), in relation to the islands in the upstream region, were determined by a line of CTD and/or XBT stations. Both the SAF and the APF were characterised by a high degree of meridional variation in position. Changes in position of the fronts were shown to occur very rapidly. In 1999 the APF moved southwards by ~40nm and the SAF northwards by ~60nm in a period of two weeks, while in 1996 the SAF appeared to move ~120nm northwards in a two week period. The positions of the SAF and APF appeared to have a significant impact on phytoplankton biomass in the vicinity of the PEIs, through the alteration of local flow dynamics. Water retention in 1996, associated with the location of the SAF and APF far to the north and south of the PEIs respectively, corresponded with high chlorophyll a concentrations in the inter-island region (reaching 1.54 mg.m^(-3)). When the fronts were close to the islands, in 1997 and 1999, and a flow through environment existed, chlorophyll a concentrations in the inter-island region were comparatively low. Although biomass enhancement was only observed at the SAF in 1996, phytoplankton size structure in 1999 indicated that, when close to the PEIs, frontal production may be transported to the island system. This is potentially an important source of allochthonous input into the island system. Zooplankton assemblages were a mix of sub-Antarctic and Antarctic communities, with a weak presence of sub-tropical species. Cluster analysis showed that during each survey the region in the vicinity of the PEIs was divided into different, spatially separated zooplankton communities, associated with water masses of different origins. These communities were identified by variations in the abundance and biomass of species rather than variation in species composition and, in general, there was a relatively high degree of similarity both within and between surveys. Inter-annual community analysis revealed that, in many cases, there was greater similarity between communities from different years than communities within years, indicating that short-term variability exceeded inter-annual variability. Multiple regression analysis showed that the major correlate with zooplankton community structure during all surveys was sea temperature, accounting for as much as 77% of the variation in community structure. Temperature was indicative of the relative contribution of sub-Antarctic and Antarctic communities, with low temperatures being characterised by an increased predominance of Antarctic communities and vice versa. The differentiation between sub-Antarctic and Antarctic waters, and their respective communities, was particularly pronounced when the SAF and APF were in close proximity to the islands. Surface salinity and sounding had limited effect on community structure. The affect of sounding was intrinsically related to zooplankton interaction with the island ecosystem. Predation by the islands' land based predators and benthic fish appears to decrease zooplankton biomass over the island shelf, particularly the macrozooplankton size fraction. However, this may only be an important factor under conditions of water retention when replenishment of zooplankton stocks is low. The low densities of many macrozooplankton species, and other deep migrators, on the island shelf may be due to their limited advection onto shallow topography. By contrast, there are indications that zooplankton species occurring at shallower depths may be concentrated in the inter-island region by mesoscale flow patterns. Analysis of the population structure of the copepod Calanus simillimus showed that this species occurred at different stages in its life cycle during different years, even though sampling took place in the same calendar months, indicating that there was inter-annual variation in the timing of the biological season. Differences in the population structure of species, and consequently their contribution to abundance and biomass, may therefore have been an important contributor to inter-annual variation in community structure. Evidence is provided for a long-term trend of southward movement of the SAF. This may have a significant affect on the PEI ecosystem, increasing the proportion of allochthonous input and altering the tropho-dynamics of the island ecosystem
- Full Text:
- Date Issued: 2000
- Authors: Hunt, Brian Peter Vere
- Date: 2000
- Subjects: Zooplankton , Zooplankton -- Prince Edward Islands , Phytoplankton , Chlorophyll
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5732 , http://hdl.handle.net/10962/d1005418 , Zooplankton , Zooplankton -- Prince Edward Islands , Phytoplankton , Chlorophyll
- Description: Mesozooplankton community structure in the vicinity of the Prince Edward Islands (PEIs) was investigated during six surveys conducted in late austral summer (April/May), 1996 to 1999. Each year zooplankton samples were collected with a bongo net (300 µm mesh) at stations upstream (west), between and downstream (east) of the islands. Chlorophyll a concentrations were determined fluorometrically, corresponding with each net tow. The positions of the Subantarctic Front (SAF) and the Antarctic Polar Front (APF), in relation to the islands in the upstream region, were determined by a line of CTD and/or XBT stations. Both the SAF and the APF were characterised by a high degree of meridional variation in position. Changes in position of the fronts were shown to occur very rapidly. In 1999 the APF moved southwards by ~40nm and the SAF northwards by ~60nm in a period of two weeks, while in 1996 the SAF appeared to move ~120nm northwards in a two week period. The positions of the SAF and APF appeared to have a significant impact on phytoplankton biomass in the vicinity of the PEIs, through the alteration of local flow dynamics. Water retention in 1996, associated with the location of the SAF and APF far to the north and south of the PEIs respectively, corresponded with high chlorophyll a concentrations in the inter-island region (reaching 1.54 mg.m^(-3)). When the fronts were close to the islands, in 1997 and 1999, and a flow through environment existed, chlorophyll a concentrations in the inter-island region were comparatively low. Although biomass enhancement was only observed at the SAF in 1996, phytoplankton size structure in 1999 indicated that, when close to the PEIs, frontal production may be transported to the island system. This is potentially an important source of allochthonous input into the island system. Zooplankton assemblages were a mix of sub-Antarctic and Antarctic communities, with a weak presence of sub-tropical species. Cluster analysis showed that during each survey the region in the vicinity of the PEIs was divided into different, spatially separated zooplankton communities, associated with water masses of different origins. These communities were identified by variations in the abundance and biomass of species rather than variation in species composition and, in general, there was a relatively high degree of similarity both within and between surveys. Inter-annual community analysis revealed that, in many cases, there was greater similarity between communities from different years than communities within years, indicating that short-term variability exceeded inter-annual variability. Multiple regression analysis showed that the major correlate with zooplankton community structure during all surveys was sea temperature, accounting for as much as 77% of the variation in community structure. Temperature was indicative of the relative contribution of sub-Antarctic and Antarctic communities, with low temperatures being characterised by an increased predominance of Antarctic communities and vice versa. The differentiation between sub-Antarctic and Antarctic waters, and their respective communities, was particularly pronounced when the SAF and APF were in close proximity to the islands. Surface salinity and sounding had limited effect on community structure. The affect of sounding was intrinsically related to zooplankton interaction with the island ecosystem. Predation by the islands' land based predators and benthic fish appears to decrease zooplankton biomass over the island shelf, particularly the macrozooplankton size fraction. However, this may only be an important factor under conditions of water retention when replenishment of zooplankton stocks is low. The low densities of many macrozooplankton species, and other deep migrators, on the island shelf may be due to their limited advection onto shallow topography. By contrast, there are indications that zooplankton species occurring at shallower depths may be concentrated in the inter-island region by mesoscale flow patterns. Analysis of the population structure of the copepod Calanus simillimus showed that this species occurred at different stages in its life cycle during different years, even though sampling took place in the same calendar months, indicating that there was inter-annual variation in the timing of the biological season. Differences in the population structure of species, and consequently their contribution to abundance and biomass, may therefore have been an important contributor to inter-annual variation in community structure. Evidence is provided for a long-term trend of southward movement of the SAF. This may have a significant affect on the PEI ecosystem, increasing the proportion of allochthonous input and altering the tropho-dynamics of the island ecosystem
- Full Text:
- Date Issued: 2000
Size-fractionated phytoplankton biomass and primary production in the Southern Ocean
- Authors: Balarin, Marianne G
- Date: 1999
- Subjects: Biomass -- Analysis , Phytoplankton , Atlantic Ocean
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5765 , http://hdl.handle.net/10962/d1005453 , Biomass -- Analysis , Phytoplankton , Atlantic Ocean
- Description: The factors controlling primary production in the Southern Ocean were investigated over two years during two cruises of the South African National Antarctic Program (SANAP). The first cruise was conducted to the region of the eastern Atlantic sector of the Southern Ocean during the collaborative Scandinavian/South African Antarctic expedition conducted in austral summer (DecemberIFebruary) 1997-1998. Production studies were conducted in the vicinity of the Marginal Ice Zone (MIZ), Interfrontal Zone (IFZ) and Antarctic Polar Front(APF). The second cruise was conducted during the Third Marion Island Oceanographic Survey (MIOS III) to the region of the Sub-Antarctic Prince Edward Islands in austral autumn (April/May) 1998. Size-fractionated production rates were estimated by 14C incorporation using standard JGOFS protocols. Oceanographic data from the first cruise suggest that the three regions can be divided into two distinct regimes. Stations occupied in the vicinity of the MIZ and the APF were characterised by a shallow mixed layer depth « 40m) while at the IFZ-stations, the mixed layer depth exceeded the 1% light depth. Microphytoplankton dominated integrated chlorophyll-a biomass in the MIZ (total chlorophyll a ranged between 15.4 and 41.3 mg Chi-a. m-2) and at the APF (range between 10.7 and 31.4 mg Chi-a. m-2) , comprising > 50% of total chlorophyll-a at all these stations. Xl Within the IFZ (2 stations), nanophytoplankton dominated total integrated Chl-a biomass (range between 5.6 and 8.8 mg Chi-a. m-2) comprising, on average, 36% of the total. Picophytoplankton comprised an average of 12% of the total Chl-a biomass (range between 3.1 and 5.9 mg Chi-a. m-2) in the MIZ, 36% in the IFZ (range between 6.4 and 7.8 mg Chl-a . m-2) and 20% in the vicinity of the APF (range between 6.8 and 10.6 mg Chi-a. m-2). Total integrated primary production ranged between 316 and 729 mg C . m-2. d-1 at stations occupied in the vicinity of the MIZ, and between 292 and 317 mg C . m·2• d-l within the IFZ. At stations occupied in the region of the APF, total integrated production ranged between 708 and 926 mg C . m-2• dol. The contribution of various size fractions to total productivity generally displayed the same pattern as integrated Chl-a biomass. Microphytoplankton formed the most important contributor to total production at stations occupied in the MIZ and at the APF. Within the IFZ, nanophytoplankton dominated total daily production. Nutrient data suggest that concentrations of macro nutrients within the upper water column were above the threshold where growth would be limited. Preliminary results showed that concentrations of iron (Fe) were highest in the southern region of the MIZ and in the vicinity of the APF. During the second cruise, conducted in the vicinity of the Sub-Antarctic Front (SAF) and in the upstream, inter-island and downstream regions of the Prince Edward Islands, there was evidence of fresh water run-off from the islands, (i.e. decreased salinities and increased concentrations of ammonia and nitrate). Oceanographic data collected at the various production stations indicated that the upper water column was well mixed throughout the survey. Total integrated biomass during the study ranged between 8.5 and 20.1 mg Chi-a. m-2• No distinct patterns in total Chl-a biomass were evident. Picophytoplankton dominated total biomass comprising> 45 % of total pigment at all stations. Nanophytoplankton were the second most important contributor to total integrated biomass. Generally xu microphytoplankton contributed < 10 % of total ChI-a. Total daily integrated production was highest (442.6 mg Chi-a. m-2) at the single station occupied in the vicinity of the SAF. Outside this region, total areal production was lower, ranging from 94.5 to 353.0 mg C . m-2. d-1. With the exception of the station occupied in the vicinity of the SAF, total productivity was dominated by nanophytoplankton, which comprised between 48 and 66% of the total. Concentrations of macronutrients did not appear to be limiting to phytoplankton growth. The absence of a phytoplankton bloom in the vicinity of the islands appears to have been related to water column stability, which was influenced by the prevailing oceanographic regime during the survey. Previous studies have shown that when the SAF lies in close proximity to the islands, advecting forces prevail, resulting in the islands functioning as a flow-through system. During this study, the SAF lay immediately north of the islands. As a consequence no water was trapped in the leeward side of the islands. The results of the two cruises suggest that phytoplankton production in the four systems investigated: the Marginal Ice Zone (MIZ), Antarctic Polar Front (APF), Inter Frontal Zone (IFZ) and Prince Edward Islands (PEl), was largely controlled by water column stability. It is probable that the availability of iron, particularly in the region of the MIZ and APF, may have further contributed to the elevated production recorded in these two regions.
- Full Text:
- Date Issued: 1999
- Authors: Balarin, Marianne G
- Date: 1999
- Subjects: Biomass -- Analysis , Phytoplankton , Atlantic Ocean
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5765 , http://hdl.handle.net/10962/d1005453 , Biomass -- Analysis , Phytoplankton , Atlantic Ocean
- Description: The factors controlling primary production in the Southern Ocean were investigated over two years during two cruises of the South African National Antarctic Program (SANAP). The first cruise was conducted to the region of the eastern Atlantic sector of the Southern Ocean during the collaborative Scandinavian/South African Antarctic expedition conducted in austral summer (DecemberIFebruary) 1997-1998. Production studies were conducted in the vicinity of the Marginal Ice Zone (MIZ), Interfrontal Zone (IFZ) and Antarctic Polar Front(APF). The second cruise was conducted during the Third Marion Island Oceanographic Survey (MIOS III) to the region of the Sub-Antarctic Prince Edward Islands in austral autumn (April/May) 1998. Size-fractionated production rates were estimated by 14C incorporation using standard JGOFS protocols. Oceanographic data from the first cruise suggest that the three regions can be divided into two distinct regimes. Stations occupied in the vicinity of the MIZ and the APF were characterised by a shallow mixed layer depth « 40m) while at the IFZ-stations, the mixed layer depth exceeded the 1% light depth. Microphytoplankton dominated integrated chlorophyll-a biomass in the MIZ (total chlorophyll a ranged between 15.4 and 41.3 mg Chi-a. m-2) and at the APF (range between 10.7 and 31.4 mg Chi-a. m-2) , comprising > 50% of total chlorophyll-a at all these stations. Xl Within the IFZ (2 stations), nanophytoplankton dominated total integrated Chl-a biomass (range between 5.6 and 8.8 mg Chi-a. m-2) comprising, on average, 36% of the total. Picophytoplankton comprised an average of 12% of the total Chl-a biomass (range between 3.1 and 5.9 mg Chi-a. m-2) in the MIZ, 36% in the IFZ (range between 6.4 and 7.8 mg Chl-a . m-2) and 20% in the vicinity of the APF (range between 6.8 and 10.6 mg Chi-a. m-2). Total integrated primary production ranged between 316 and 729 mg C . m-2. d-1 at stations occupied in the vicinity of the MIZ, and between 292 and 317 mg C . m·2• d-l within the IFZ. At stations occupied in the region of the APF, total integrated production ranged between 708 and 926 mg C . m-2• dol. The contribution of various size fractions to total productivity generally displayed the same pattern as integrated Chl-a biomass. Microphytoplankton formed the most important contributor to total production at stations occupied in the MIZ and at the APF. Within the IFZ, nanophytoplankton dominated total daily production. Nutrient data suggest that concentrations of macro nutrients within the upper water column were above the threshold where growth would be limited. Preliminary results showed that concentrations of iron (Fe) were highest in the southern region of the MIZ and in the vicinity of the APF. During the second cruise, conducted in the vicinity of the Sub-Antarctic Front (SAF) and in the upstream, inter-island and downstream regions of the Prince Edward Islands, there was evidence of fresh water run-off from the islands, (i.e. decreased salinities and increased concentrations of ammonia and nitrate). Oceanographic data collected at the various production stations indicated that the upper water column was well mixed throughout the survey. Total integrated biomass during the study ranged between 8.5 and 20.1 mg Chi-a. m-2• No distinct patterns in total Chl-a biomass were evident. Picophytoplankton dominated total biomass comprising> 45 % of total pigment at all stations. Nanophytoplankton were the second most important contributor to total integrated biomass. Generally xu microphytoplankton contributed < 10 % of total ChI-a. Total daily integrated production was highest (442.6 mg Chi-a. m-2) at the single station occupied in the vicinity of the SAF. Outside this region, total areal production was lower, ranging from 94.5 to 353.0 mg C . m-2. d-1. With the exception of the station occupied in the vicinity of the SAF, total productivity was dominated by nanophytoplankton, which comprised between 48 and 66% of the total. Concentrations of macronutrients did not appear to be limiting to phytoplankton growth. The absence of a phytoplankton bloom in the vicinity of the islands appears to have been related to water column stability, which was influenced by the prevailing oceanographic regime during the survey. Previous studies have shown that when the SAF lies in close proximity to the islands, advecting forces prevail, resulting in the islands functioning as a flow-through system. During this study, the SAF lay immediately north of the islands. As a consequence no water was trapped in the leeward side of the islands. The results of the two cruises suggest that phytoplankton production in the four systems investigated: the Marginal Ice Zone (MIZ), Antarctic Polar Front (APF), Inter Frontal Zone (IFZ) and Prince Edward Islands (PEl), was largely controlled by water column stability. It is probable that the availability of iron, particularly in the region of the MIZ and APF, may have further contributed to the elevated production recorded in these two regions.
- Full Text:
- Date Issued: 1999
- «
- ‹
- 1
- ›
- »