Population genetics of invasive and native Nymphaea mexicana Zuccarini: Taking the first steps to initiate a biological control programme in South Africa
- Reid, Megan K, Naidu, Prinavin, Paterson, Iain D, Mangan, Rosie, Coetzee, Julie A
- Authors: Reid, Megan K , Naidu, Prinavin , Paterson, Iain D , Mangan, Rosie , Coetzee, Julie A
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/419375 , vital:71638 , xlink:href="https://doi.org/10.1016/j.aquabot.2021.103372"
- Description: Nymphaea mexicana Zuccarini (Nympheaceae) (Mexican waterlily) is a rooted floating-leaved aquatic plant native to southern USA and Mexico that has become a problematic invasive alien plant in South Africa. Biological control is considered a desirable management strategy for the plant in South Africa. A good understanding of the genetic structure of invasive populations has been useful in other biological control programmes because taxonomic uncertainty about the target plant can result in natural enemies that are not adapted to the invasive populations being considered as potential agents. For N. mexicana, hybrids exist in the wild and horticultural trade, but identification is difficult, so understanding the genetic structure of populations is required to ensure that potential agents are collected off plants similar to invasive populations in South Africa. ISSR (inter-simple sequence repeats) analysis was used to determine whether invasive N. mexicana populations from South Africa were genetically similar to native range populations from USA or whether they were hybrids. Results from these analyses were matched with the morphotypes of each population based on petal colour, shape, and size. The genotypes suggested by the ISSR analyses corroborated the presence of both hybrid and pure forms of N. mexicana in South Africa. Populations of N. mexicana in the invaded range that are genetically similar to native range populations are more likely to be suitable for biological control, while other populations are likely to be hybrids formed by crossing of parents from the native range or within the horticultural trade, which may present difficulties for management using biocontrol.
- Full Text:
- Date Issued: 2021
- Authors: Reid, Megan K , Naidu, Prinavin , Paterson, Iain D , Mangan, Rosie , Coetzee, Julie A
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/419375 , vital:71638 , xlink:href="https://doi.org/10.1016/j.aquabot.2021.103372"
- Description: Nymphaea mexicana Zuccarini (Nympheaceae) (Mexican waterlily) is a rooted floating-leaved aquatic plant native to southern USA and Mexico that has become a problematic invasive alien plant in South Africa. Biological control is considered a desirable management strategy for the plant in South Africa. A good understanding of the genetic structure of invasive populations has been useful in other biological control programmes because taxonomic uncertainty about the target plant can result in natural enemies that are not adapted to the invasive populations being considered as potential agents. For N. mexicana, hybrids exist in the wild and horticultural trade, but identification is difficult, so understanding the genetic structure of populations is required to ensure that potential agents are collected off plants similar to invasive populations in South Africa. ISSR (inter-simple sequence repeats) analysis was used to determine whether invasive N. mexicana populations from South Africa were genetically similar to native range populations from USA or whether they were hybrids. Results from these analyses were matched with the morphotypes of each population based on petal colour, shape, and size. The genotypes suggested by the ISSR analyses corroborated the presence of both hybrid and pure forms of N. mexicana in South Africa. Populations of N. mexicana in the invaded range that are genetically similar to native range populations are more likely to be suitable for biological control, while other populations are likely to be hybrids formed by crossing of parents from the native range or within the horticultural trade, which may present difficulties for management using biocontrol.
- Full Text:
- Date Issued: 2021
Risk assessment to interpret the physiological host range of Hydrellia egeriae, a biocontrol agent for Egeria densa
- Smith, Rosalie, Mangan, Rosie, Coetzee, Julie A
- Authors: Smith, Rosalie , Mangan, Rosie , Coetzee, Julie A
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/418053 , vital:71504 , xlink:href="https://doi.org/10.1007/s10526-019-09942-4"
- Description: Egeria densa Planchon (Hydrocharitaceae) is a submerged macrophyte native to South America. It forms part of a new suite of invasive aquatic plants that has benefited from open nutrient-rich freshwater systems following the successful biological control of floating aquatic plants in South Africa. The specificity of the leaf-mining fly, Hydrellia egeriae Rodrigues (Diptera: Ephydridae) was tested, using traditional laboratory host-specificity testing (i.e., no-choice and paired choice). Only one non-target species, Lagarosiphon major Deeming (Hydrocharitaceae) supported larval development during pair-choice tests. In order to avoid the rejection of a safe and potentially effective agent, continuation (i.e., multiple generations) tests were conducted to measure the ability of the non-target species to nutritionally support a population indefinitely. None of these species could sustain a viable agent population for more than three generations. Laboratory host-specificity tests are limited as they exempt certain insect-host behaviours. To enhance the interpretation of host-specificity results, a risk assessment was conducted using agent preference (i.e., choice tests) and performance (i.e., choice and continuation tests) results. The feeding and reproductive risk that H. egeriae poses to non-target species is below 2%. Based on these findings, permission for its release in South Africa has been obtained.
- Full Text:
- Date Issued: 2019
- Authors: Smith, Rosalie , Mangan, Rosie , Coetzee, Julie A
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/418053 , vital:71504 , xlink:href="https://doi.org/10.1007/s10526-019-09942-4"
- Description: Egeria densa Planchon (Hydrocharitaceae) is a submerged macrophyte native to South America. It forms part of a new suite of invasive aquatic plants that has benefited from open nutrient-rich freshwater systems following the successful biological control of floating aquatic plants in South Africa. The specificity of the leaf-mining fly, Hydrellia egeriae Rodrigues (Diptera: Ephydridae) was tested, using traditional laboratory host-specificity testing (i.e., no-choice and paired choice). Only one non-target species, Lagarosiphon major Deeming (Hydrocharitaceae) supported larval development during pair-choice tests. In order to avoid the rejection of a safe and potentially effective agent, continuation (i.e., multiple generations) tests were conducted to measure the ability of the non-target species to nutritionally support a population indefinitely. None of these species could sustain a viable agent population for more than three generations. Laboratory host-specificity tests are limited as they exempt certain insect-host behaviours. To enhance the interpretation of host-specificity results, a risk assessment was conducted using agent preference (i.e., choice tests) and performance (i.e., choice and continuation tests) results. The feeding and reproductive risk that H. egeriae poses to non-target species is below 2%. Based on these findings, permission for its release in South Africa has been obtained.
- Full Text:
- Date Issued: 2019
- «
- ‹
- 1
- ›
- »