Phytochemical analysis and bioactivity of selected South African medicinal plants on clinical isolates of Helicobacter pylori
- Authors: Njume, Collise
- Date: 2011
- Subjects: Helicobacter pylori , Medicinal plants -- Biotechnology , Traditional medicine -- South Africa -- Eastern Cape , Antibiotics , Drug resistance in microorganisms , Extracts , Helicobacter pylori infections
- Language: English
- Type: Thesis , Doctoral , PhD (Microbiology)
- Identifier: vital:11260 , http://hdl.handle.net/10353/449 , Helicobacter pylori , Medicinal plants -- Biotechnology , Traditional medicine -- South Africa -- Eastern Cape , Antibiotics , Drug resistance in microorganisms , Extracts , Helicobacter pylori infections
- Description: Medicinal plants have been used as traditional medicine in the treatment of numerous human diseases for thousands of years in many parts of the world. In the developing world, especially in rural areas, herbal remedies continue to be a primary source of medicine. Scientifically, medicinal plants have proven to be an abundant source of biologically active compounds, many of which have already been formulated into useful therapeutic substances or have provided a basis for the development of new lead molecules for pharmaceuticals. Antibiotic resistance, undesireable side effects and expences associated with the use of combination therapy in the treatment of Helicobacter pylori infections have generated a considerable interest in the study of medicinal plants as potential sources of new drugs against this organism. The high complexicity of bioactive compounds accumulated in plants coupled with their broad antimicrobial activity may make it difficult for pathogenic organisms, including H. pylori to acquire resistance during treatment. This study therefore evaluates the antimicrobial potential of selected South African medicinal plants employed in the treatment of H. pylori-related infections, and the subsequent isolation of the plant active principles. An ethnobotanical survey of plants used in the treatment of H. pylori-related infections was conducted in the study area. Crude extracts of Combretum molle, Sclerocarya birrea, Garcinia kola, Alepidea amatymbica and 2 Strychnos species were screened against 30 clinical strains of H. pylori and 2 standard control strains (NCTC 11638 and ATCC 43526). In the preliminary stages of this study, ethyl acetate, acetone, ethanol, methanol and water extracts of the plants were tested against H. pylori by agar well diffusion and micro broth dilution methods. The plant crude extracts that exhibited anti-H. pylori activity with a iv percentage susceptibility of 50 percent and above were considered for the rate of kill assays and the most active crude extracts selected for bio-assay guided isolation of the active ingredient. Preliminary fractionation of the crude extract was achieved by thin layer chromatography (TLC) using different solvent combinations; hexane/diethylether (HDE), ethyl acetate/methanol/water (EMW) and chloroform/ethyl acetate/formic acid (CEF) in order to determine the most suitable combination for column chromatography (CC) and subsequent testing by indirect bioautography. The extract was then fractionated in a silica gel column using previously determined solvent combinations as eluent. Active fractions obtained from column chromatography separations were further fractionated and the compounds identified by gas chromatography/mass spectrometry (GC/MS) analysis. All the plants exhibited antimicrobial activity against H. pylori with zone of inhibition diameters ranging from 0 - 38 mm and minimum inhibitory concentration (MIC) values ranging from 0.06 - 5.0 mg/mL. The most active plant extracts were the acetone extract of C. molle with a percentage susceptibility of 87.1 percent, acetone and aqueous extracts of S. birrea (71 percent each) and the ethanolic extracts of G. kola (53.3 percent). Except for the aqueous extract, these extracts also exhibited a strong bactericidal activity against H. pylori at different concentrations. TLC analysis revealed the presence of 9 components in the acetone extract of S. birrea with the EMW solvent system as opposed to 5 and 8 with HDE and CEF respectively. Bioassay-guided isolation led to the identification of 52 compounds from the acetone extract of S. birrea with n-octacosane being the most abundant (41.68 percent). This was followed by pyrrolidine (38.91 percent), terpinen-4-ol (38.3 percent), n-eicosane (24.98 percent), cyclopentane (16.76 percent), n-triacontane (16.28 percent), aromadendrene (13.63 percent) and α-gujunene (8.77 percent). Terpinen-4-ol and pyrrolidine demonstrated strong antimicrobial activity against H. pylori at all concentrations tested. These results may serve as preliminary scientific validation of the ethnomedicinal uses of the above mentioned plants in the treatment of H. pylori-related infections in South Africa. Terpinen-4-ol and pyrrolidine could be considered for further evaluation as therapeutic or prophylactic agents in the treatment of H. pylori-related infections. However, further investigations would be necessary to determine their toxicological properties, in-vivo potencies and mechanism of action against H.pylori
- Full Text:
- Date Issued: 2011
- Authors: Njume, Collise
- Date: 2011
- Subjects: Helicobacter pylori , Medicinal plants -- Biotechnology , Traditional medicine -- South Africa -- Eastern Cape , Antibiotics , Drug resistance in microorganisms , Extracts , Helicobacter pylori infections
- Language: English
- Type: Thesis , Doctoral , PhD (Microbiology)
- Identifier: vital:11260 , http://hdl.handle.net/10353/449 , Helicobacter pylori , Medicinal plants -- Biotechnology , Traditional medicine -- South Africa -- Eastern Cape , Antibiotics , Drug resistance in microorganisms , Extracts , Helicobacter pylori infections
- Description: Medicinal plants have been used as traditional medicine in the treatment of numerous human diseases for thousands of years in many parts of the world. In the developing world, especially in rural areas, herbal remedies continue to be a primary source of medicine. Scientifically, medicinal plants have proven to be an abundant source of biologically active compounds, many of which have already been formulated into useful therapeutic substances or have provided a basis for the development of new lead molecules for pharmaceuticals. Antibiotic resistance, undesireable side effects and expences associated with the use of combination therapy in the treatment of Helicobacter pylori infections have generated a considerable interest in the study of medicinal plants as potential sources of new drugs against this organism. The high complexicity of bioactive compounds accumulated in plants coupled with their broad antimicrobial activity may make it difficult for pathogenic organisms, including H. pylori to acquire resistance during treatment. This study therefore evaluates the antimicrobial potential of selected South African medicinal plants employed in the treatment of H. pylori-related infections, and the subsequent isolation of the plant active principles. An ethnobotanical survey of plants used in the treatment of H. pylori-related infections was conducted in the study area. Crude extracts of Combretum molle, Sclerocarya birrea, Garcinia kola, Alepidea amatymbica and 2 Strychnos species were screened against 30 clinical strains of H. pylori and 2 standard control strains (NCTC 11638 and ATCC 43526). In the preliminary stages of this study, ethyl acetate, acetone, ethanol, methanol and water extracts of the plants were tested against H. pylori by agar well diffusion and micro broth dilution methods. The plant crude extracts that exhibited anti-H. pylori activity with a iv percentage susceptibility of 50 percent and above were considered for the rate of kill assays and the most active crude extracts selected for bio-assay guided isolation of the active ingredient. Preliminary fractionation of the crude extract was achieved by thin layer chromatography (TLC) using different solvent combinations; hexane/diethylether (HDE), ethyl acetate/methanol/water (EMW) and chloroform/ethyl acetate/formic acid (CEF) in order to determine the most suitable combination for column chromatography (CC) and subsequent testing by indirect bioautography. The extract was then fractionated in a silica gel column using previously determined solvent combinations as eluent. Active fractions obtained from column chromatography separations were further fractionated and the compounds identified by gas chromatography/mass spectrometry (GC/MS) analysis. All the plants exhibited antimicrobial activity against H. pylori with zone of inhibition diameters ranging from 0 - 38 mm and minimum inhibitory concentration (MIC) values ranging from 0.06 - 5.0 mg/mL. The most active plant extracts were the acetone extract of C. molle with a percentage susceptibility of 87.1 percent, acetone and aqueous extracts of S. birrea (71 percent each) and the ethanolic extracts of G. kola (53.3 percent). Except for the aqueous extract, these extracts also exhibited a strong bactericidal activity against H. pylori at different concentrations. TLC analysis revealed the presence of 9 components in the acetone extract of S. birrea with the EMW solvent system as opposed to 5 and 8 with HDE and CEF respectively. Bioassay-guided isolation led to the identification of 52 compounds from the acetone extract of S. birrea with n-octacosane being the most abundant (41.68 percent). This was followed by pyrrolidine (38.91 percent), terpinen-4-ol (38.3 percent), n-eicosane (24.98 percent), cyclopentane (16.76 percent), n-triacontane (16.28 percent), aromadendrene (13.63 percent) and α-gujunene (8.77 percent). Terpinen-4-ol and pyrrolidine demonstrated strong antimicrobial activity against H. pylori at all concentrations tested. These results may serve as preliminary scientific validation of the ethnomedicinal uses of the above mentioned plants in the treatment of H. pylori-related infections in South Africa. Terpinen-4-ol and pyrrolidine could be considered for further evaluation as therapeutic or prophylactic agents in the treatment of H. pylori-related infections. However, further investigations would be necessary to determine their toxicological properties, in-vivo potencies and mechanism of action against H.pylori
- Full Text:
- Date Issued: 2011
Phytochemical analysis and bioactivity of the stem bark of Combretum Molle on some selected bacterial pathogens
- Authors: Nyenje, Mirriam, E
- Date: 2011
- Subjects: Drug resistance in microorganisms , Materia medica, Vegetable , Antibiotics , Microbial sensitivity tests , Gram-negative bacterial infections
- Language: English
- Type: Thesis , Masters , MSc (Microbiology)
- Identifier: vital:11261 , http://hdl.handle.net/10353/391 , Drug resistance in microorganisms , Materia medica, Vegetable , Antibiotics , Microbial sensitivity tests , Gram-negative bacterial infections
- Description: Antimicrobial resistance is a worldwide problem that has deleterious long-term effects as the development of drug resistance outpaces the development of new drugs. Plants have been used for many generations for healing purposes, and screening of extracts of these plants has often yielded positive outcomes. This study was aimed at isolating and characterizing the major active antimicrobial compounds present in the stem bark of C. molle, in a bid to identify potential sources of cheap starting materials for the synthesis of new drugs. Various solvents (hexane, ethyl acetate, dichloromethane, acetone, ethanol and methanol) were used for extraction. The agar well diffusion technique was used to screen for antimicrobial activity of C. molle extracts against Streptococcus pyogenes ATCC 49399, Plesiomonas shigelloides ATCC 51903, Pseudomonas aeruginosa ATCC 15442, Helicobacter pylori ATCC 43526 and Helicobacter pylori 252C (clinical isolate); minimum inhibition concentration (MIC) of the most active extracts was determined by the broth dilution method. Fractionation of acetone extract was done by thin layer chromatography (TLC) and bioautography to determine the compounds present and their antimicrobial activity respectively. The acetone extract was purified by column chromatography and their MIC determined. The most potent fraction (EA4) was subjected to Gas chromatography- Mass spectrometry (GC-MS) and High performance liquid chromatography (HPLC) for identification of the active compounds. Results were analyzed by the Fisher‟s exact test. All the extracts tested demonstrated antimicrobial activity with zone diameters of inhibition ranging from 0–32 mm. Acetone was the most potent extract with its MIC ranging from 0.078–5.0 mg/mL. Seventeen fractions were collected from column chromatography and the most active fraction against all the organisms was EA 4 (eluted with 100 percent ethyl acetate), with its MIC ranging from 0.078 - 2.5mg/mL. There was no statistically significant difference (P>0.05) in the potency of the xii four extracts (acetone, methanol, ethanol and ethyl acetate) and antibiotic (ciprofloxacin) on the different bacterial strains tested, likewise the crude extract and the fractions. No compound was detected by GC-MS whereas numerous peaks were identified by HPLC implying that the active compounds in this plant are non volatile. We could not identify the compounds thereby proposing further studies using Nuclear magnetic resonance to identify the compounds. The study revealed that the acetone extract of C. molle was the most active against all the test organisms and therefore justifies the use of this plant in traditional medicine.
- Full Text:
- Date Issued: 2011
- Authors: Nyenje, Mirriam, E
- Date: 2011
- Subjects: Drug resistance in microorganisms , Materia medica, Vegetable , Antibiotics , Microbial sensitivity tests , Gram-negative bacterial infections
- Language: English
- Type: Thesis , Masters , MSc (Microbiology)
- Identifier: vital:11261 , http://hdl.handle.net/10353/391 , Drug resistance in microorganisms , Materia medica, Vegetable , Antibiotics , Microbial sensitivity tests , Gram-negative bacterial infections
- Description: Antimicrobial resistance is a worldwide problem that has deleterious long-term effects as the development of drug resistance outpaces the development of new drugs. Plants have been used for many generations for healing purposes, and screening of extracts of these plants has often yielded positive outcomes. This study was aimed at isolating and characterizing the major active antimicrobial compounds present in the stem bark of C. molle, in a bid to identify potential sources of cheap starting materials for the synthesis of new drugs. Various solvents (hexane, ethyl acetate, dichloromethane, acetone, ethanol and methanol) were used for extraction. The agar well diffusion technique was used to screen for antimicrobial activity of C. molle extracts against Streptococcus pyogenes ATCC 49399, Plesiomonas shigelloides ATCC 51903, Pseudomonas aeruginosa ATCC 15442, Helicobacter pylori ATCC 43526 and Helicobacter pylori 252C (clinical isolate); minimum inhibition concentration (MIC) of the most active extracts was determined by the broth dilution method. Fractionation of acetone extract was done by thin layer chromatography (TLC) and bioautography to determine the compounds present and their antimicrobial activity respectively. The acetone extract was purified by column chromatography and their MIC determined. The most potent fraction (EA4) was subjected to Gas chromatography- Mass spectrometry (GC-MS) and High performance liquid chromatography (HPLC) for identification of the active compounds. Results were analyzed by the Fisher‟s exact test. All the extracts tested demonstrated antimicrobial activity with zone diameters of inhibition ranging from 0–32 mm. Acetone was the most potent extract with its MIC ranging from 0.078–5.0 mg/mL. Seventeen fractions were collected from column chromatography and the most active fraction against all the organisms was EA 4 (eluted with 100 percent ethyl acetate), with its MIC ranging from 0.078 - 2.5mg/mL. There was no statistically significant difference (P>0.05) in the potency of the xii four extracts (acetone, methanol, ethanol and ethyl acetate) and antibiotic (ciprofloxacin) on the different bacterial strains tested, likewise the crude extract and the fractions. No compound was detected by GC-MS whereas numerous peaks were identified by HPLC implying that the active compounds in this plant are non volatile. We could not identify the compounds thereby proposing further studies using Nuclear magnetic resonance to identify the compounds. The study revealed that the acetone extract of C. molle was the most active against all the test organisms and therefore justifies the use of this plant in traditional medicine.
- Full Text:
- Date Issued: 2011
Assessment of antibiotic production by some marine Streptomyces isolated from the Nahoon Beach
- Ogunmwonyi, Isoken Nekpen Henrietta
- Authors: Ogunmwonyi, Isoken Nekpen Henrietta
- Date: 2010
- Subjects: Streptomyces , Actinobacteria , Gram-positive bacteria , Antibiotics , Antibiotics -- Testing , Drug resistance in microorganisms
- Language: English
- Type: Thesis , Masters , MSc (Microbiology)
- Identifier: vital:11243 , http://hdl.handle.net/10353/264 , Streptomyces , Actinobacteria , Gram-positive bacteria , Antibiotics , Antibiotics -- Testing , Drug resistance in microorganisms
- Description: Rapidly emerging strains of bacteria resistant to most advanced antibiotics have become issues of very important public health concern. Research currently directed towards marine actinomycetes presents a vast potential for new compounds that could be able to safely and effectively target resistant species. In this regard, ten putative Streptomyces strains isolated from the Nahoon beach were selected and assessed for antibiotic production and activity against a wide range of bacteria including reference strains, environmental strain and clinical isolates. The ethyl acetate extracts of the putative Streptomyces isolates showed activities against at least 6 and up to 26 of the 32 test bacteria. Inhibition zones were found to range between 9-32 mm diameters at a concentration of 10 mg/ml. The minimum inhibitory concentrations (MICs) of the crude extracts ranged from 0.039 - 10 mg/ml and the least minimum bactericidal concentration (MBC) demonstrated was 0.625 mg/ml against a reference strain Staphylococcus aureus ATCC 6538. Time kill kinetics of all extracts revealed bacteristatic and bactericidal activities. Average Log reductions in viable cell counts for all the extracts ranged from 0.86 Log10 and 3.99 Log10 cfu/ml after 3 h interaction and 0.01 Log10 and 4.86 Log10 after 6 h interaction at MIC, 2 × MIC, 3 × MIC and 4 × MIC concentrations. Most of the extracts were speedily bactericidal at 3 × MIC and 4 × MIC resulting in over 50 % elimination of most of the test bacteria within 3 h and 6 h interaction. The partial characterization of the crude extracts by IR spectral analysis revealed possibility of terpenoid, long chain fatty acids and secondary amine derivatives compounds in the extracts. It is therefore recommended that further investigation should address the relationship between the structure of the active component of the extracts and the broad spectrum activity, as well as a rapid method for large scale production and purification and whether this group of antibiotics has any application in managing human infectious disease.
- Full Text:
- Date Issued: 2010
- Authors: Ogunmwonyi, Isoken Nekpen Henrietta
- Date: 2010
- Subjects: Streptomyces , Actinobacteria , Gram-positive bacteria , Antibiotics , Antibiotics -- Testing , Drug resistance in microorganisms
- Language: English
- Type: Thesis , Masters , MSc (Microbiology)
- Identifier: vital:11243 , http://hdl.handle.net/10353/264 , Streptomyces , Actinobacteria , Gram-positive bacteria , Antibiotics , Antibiotics -- Testing , Drug resistance in microorganisms
- Description: Rapidly emerging strains of bacteria resistant to most advanced antibiotics have become issues of very important public health concern. Research currently directed towards marine actinomycetes presents a vast potential for new compounds that could be able to safely and effectively target resistant species. In this regard, ten putative Streptomyces strains isolated from the Nahoon beach were selected and assessed for antibiotic production and activity against a wide range of bacteria including reference strains, environmental strain and clinical isolates. The ethyl acetate extracts of the putative Streptomyces isolates showed activities against at least 6 and up to 26 of the 32 test bacteria. Inhibition zones were found to range between 9-32 mm diameters at a concentration of 10 mg/ml. The minimum inhibitory concentrations (MICs) of the crude extracts ranged from 0.039 - 10 mg/ml and the least minimum bactericidal concentration (MBC) demonstrated was 0.625 mg/ml against a reference strain Staphylococcus aureus ATCC 6538. Time kill kinetics of all extracts revealed bacteristatic and bactericidal activities. Average Log reductions in viable cell counts for all the extracts ranged from 0.86 Log10 and 3.99 Log10 cfu/ml after 3 h interaction and 0.01 Log10 and 4.86 Log10 after 6 h interaction at MIC, 2 × MIC, 3 × MIC and 4 × MIC concentrations. Most of the extracts were speedily bactericidal at 3 × MIC and 4 × MIC resulting in over 50 % elimination of most of the test bacteria within 3 h and 6 h interaction. The partial characterization of the crude extracts by IR spectral analysis revealed possibility of terpenoid, long chain fatty acids and secondary amine derivatives compounds in the extracts. It is therefore recommended that further investigation should address the relationship between the structure of the active component of the extracts and the broad spectrum activity, as well as a rapid method for large scale production and purification and whether this group of antibiotics has any application in managing human infectious disease.
- Full Text:
- Date Issued: 2010
In vitro bioactivity of crude extracts of Lippia javanica on clinical isolates of Helicobacter pylori: preliminary phytochemical screening
- Authors: Nkomo, Lindelwa Precious
- Date: 2010
- Subjects: Extracts , Helicobacter pylori , Antibiotics , Drug resistance in microorganisms , Materia medica, Vegetable
- Language: English
- Type: Thesis , Masters , MSc (Microbiology)
- Identifier: vital:11257 , http://hdl.handle.net/10353/508 , Extracts , Helicobacter pylori , Antibiotics , Drug resistance in microorganisms , Materia medica, Vegetable
- Description: Helicobacter pylori classified as a class 1 carcinogen is a common human pathogen implicated in certain gastrointestinal diseases. Helicobacter pylori infection is acquired mainly in childhood, especially in developing countries. H. pylori infection causes peptic ulcer, duodenitis, gastritis and cancer. The growing resistance of H. pylori to antibiotics used in its treatment as well as other innate limitations of the triple therapy has necessitated a search for alternative treatment from natural sources which could be readily available, less cost effective. The antimicrobial activity of solvents (acetone, ethanol, methanol, chloroform and water) crude extracts of Lippia javanica were investigated against 31 H. pylori strains by the agar well diffusion technique. The minimum inhibitory concentration (MIC) was determined by spectrophotometric analysis at 620 nm using the broth micro dilution method and the rate of kill by broth dilution method. Phytochemical analysis was also performed. H. pylori standard strain NCTC 11638 was included as a positive control. Metronidazole and amoxicillin were used as positive control antibiotics. The ANOVA test was used to analyze the results using SPSS version 17.0. The strains were inhibited by all the extracts with inhibition zones of diameter ranging from 0-36 mm and 0-35 mm for the control antibiotic, clarithromycin. The MIC90 ranged from 0.039- 0.625 mg/mL for acetone; 0.039-1.25mg/mL for methanol, 0.00195-0.313 mg/mL for ethanol; 0.01975-2.5 mg/mL for metronidazole and 0.0048-2.5 mg/mL for amoxicillin. Acetone extract completely inhibited strain PE369C at MIC (0.1 mg/mL) and 2× MIC (0.2 mg/mL) in 18h and at ½× MIC (0.05 mg/mL) in 36h. Strain PE466C was completely inhibited at 4× MIC in 72h. Phytochemical analysis revealed the presence of flavonoids, saponins, tannins, steroids and alkaloids. The results indicate that the extracts of the leaves of L. javanica may contain compounds with anti-H. pylori activity and merits further study to identify the compounds.
- Full Text:
- Date Issued: 2010
- Authors: Nkomo, Lindelwa Precious
- Date: 2010
- Subjects: Extracts , Helicobacter pylori , Antibiotics , Drug resistance in microorganisms , Materia medica, Vegetable
- Language: English
- Type: Thesis , Masters , MSc (Microbiology)
- Identifier: vital:11257 , http://hdl.handle.net/10353/508 , Extracts , Helicobacter pylori , Antibiotics , Drug resistance in microorganisms , Materia medica, Vegetable
- Description: Helicobacter pylori classified as a class 1 carcinogen is a common human pathogen implicated in certain gastrointestinal diseases. Helicobacter pylori infection is acquired mainly in childhood, especially in developing countries. H. pylori infection causes peptic ulcer, duodenitis, gastritis and cancer. The growing resistance of H. pylori to antibiotics used in its treatment as well as other innate limitations of the triple therapy has necessitated a search for alternative treatment from natural sources which could be readily available, less cost effective. The antimicrobial activity of solvents (acetone, ethanol, methanol, chloroform and water) crude extracts of Lippia javanica were investigated against 31 H. pylori strains by the agar well diffusion technique. The minimum inhibitory concentration (MIC) was determined by spectrophotometric analysis at 620 nm using the broth micro dilution method and the rate of kill by broth dilution method. Phytochemical analysis was also performed. H. pylori standard strain NCTC 11638 was included as a positive control. Metronidazole and amoxicillin were used as positive control antibiotics. The ANOVA test was used to analyze the results using SPSS version 17.0. The strains were inhibited by all the extracts with inhibition zones of diameter ranging from 0-36 mm and 0-35 mm for the control antibiotic, clarithromycin. The MIC90 ranged from 0.039- 0.625 mg/mL for acetone; 0.039-1.25mg/mL for methanol, 0.00195-0.313 mg/mL for ethanol; 0.01975-2.5 mg/mL for metronidazole and 0.0048-2.5 mg/mL for amoxicillin. Acetone extract completely inhibited strain PE369C at MIC (0.1 mg/mL) and 2× MIC (0.2 mg/mL) in 18h and at ½× MIC (0.05 mg/mL) in 36h. Strain PE466C was completely inhibited at 4× MIC in 72h. Phytochemical analysis revealed the presence of flavonoids, saponins, tannins, steroids and alkaloids. The results indicate that the extracts of the leaves of L. javanica may contain compounds with anti-H. pylori activity and merits further study to identify the compounds.
- Full Text:
- Date Issued: 2010
Assessment of antibacterial potentials of Garcinia Kola seed extracts and their interactions with antibiotics
- Authors: Sibanda, Thulani
- Date: 2007
- Subjects: Drug resistance in microorganisms , Garcinia , Antibiotics , Medicinal plants
- Language: English
- Type: Thesis , Masters , MSc (Microbiology)
- Identifier: vital:11242 , http://hdl.handle.net/10353/71 , Drug resistance in microorganisms , Garcinia , Antibiotics , Medicinal plants
- Description: The antibacterial potency of the extracts of the seed of Garcinia kola (bitter kola) was investigated in this study against a panel of referenced, environmental and clinical bacterial strains. The killing rates of the active extract as well as their potential for combination antibacterial therapy with standard antibiotics were also elucidated using standard procedures. The aqueous and acetone extracts of the seed were screened for activity against 27 bacterial isolates. The aqueous extract exhibited activity mainly against Gram positive organisms with Minimum inhibitory concentration (MIC) values ranging from 5 mgml-1 – 20 mgml-1, while the acetone extract showed activity against both Gram negative and Gram positive organisms with MIC values ranging from 10 mgml-1 - 0.156 mgml-1. The acetone extract also showed rapid bactericidal activity against Staphylococcus aureus ATCC 6538 with a 3.097 Log10 reduction in counts within 4 hours at 0.3125 mgml-1 and a 1.582 Log10 reduction against Proteus vulgaris CSIR 0030 at 5 mgml-1 after 1 hour. In addition, the aqueous, methanol and acetone extracts of the seeds also exhibited activity against four clinical strains of Staphylococcus isolated from wound sepsis specimens. The MIC values for the aqueous extract were 10 mgml-1 for all the isolates while the acetone and methanol extracts had lower values ranging from 0.3125 - 0.625 mgml-1. The acetone extract was strongly bactericidal against Staphylococcus aureus OKOH3 resulting in a 2.70 Log10 reduction in counts at 1.25 mgml-1 within 4 hours of exposure and a complete elimination of the organism after 8 hours. The bactericidal vi activity of the same extract against Staphylococcus aureus OKOH1 was weak, achieving only a 2.92 Log10 reduction in counts at 1.25 mgml-1 (4× MIC) in 24 hours. In the test for interactions between the acetone extract of the seeds and antibiotics, synergistic interactions were observed largely against Gram positive organisms using the FIC indices, (indices of 0.52 - 0.875) with combinations against Gram negatives yielding largely antagonistic interactions (indices of 2.0 to 5.0). Synergy (≥ 1000 times or ≥ 3 Log10 potentiation of the bactericidal activity) against both Gram negative and Gram positive organisms was detected by time kill assays mainly involving the antibiotics tetracycline, chloramphenicol, amoxycillin and penicillin G. Combinations involving erythromycin and ciprofloxacin consistently gave antagonistic or indifferent interactions. We conclude that the acetone extract of Garcinia kola seeds possess strong bactericidal activities against both Gram positive and Gram negative organisms and can be therapeutically useful in the treatment of bacterial infections including the problematic staphylococcal wound infections. In addition, the acetone extract can be a potential source of broad spectrum resistance modifying compounds that can potentially improve the performance of antibiotics in the treatment of drug resistant infections.
- Full Text:
- Date Issued: 2007
- Authors: Sibanda, Thulani
- Date: 2007
- Subjects: Drug resistance in microorganisms , Garcinia , Antibiotics , Medicinal plants
- Language: English
- Type: Thesis , Masters , MSc (Microbiology)
- Identifier: vital:11242 , http://hdl.handle.net/10353/71 , Drug resistance in microorganisms , Garcinia , Antibiotics , Medicinal plants
- Description: The antibacterial potency of the extracts of the seed of Garcinia kola (bitter kola) was investigated in this study against a panel of referenced, environmental and clinical bacterial strains. The killing rates of the active extract as well as their potential for combination antibacterial therapy with standard antibiotics were also elucidated using standard procedures. The aqueous and acetone extracts of the seed were screened for activity against 27 bacterial isolates. The aqueous extract exhibited activity mainly against Gram positive organisms with Minimum inhibitory concentration (MIC) values ranging from 5 mgml-1 – 20 mgml-1, while the acetone extract showed activity against both Gram negative and Gram positive organisms with MIC values ranging from 10 mgml-1 - 0.156 mgml-1. The acetone extract also showed rapid bactericidal activity against Staphylococcus aureus ATCC 6538 with a 3.097 Log10 reduction in counts within 4 hours at 0.3125 mgml-1 and a 1.582 Log10 reduction against Proteus vulgaris CSIR 0030 at 5 mgml-1 after 1 hour. In addition, the aqueous, methanol and acetone extracts of the seeds also exhibited activity against four clinical strains of Staphylococcus isolated from wound sepsis specimens. The MIC values for the aqueous extract were 10 mgml-1 for all the isolates while the acetone and methanol extracts had lower values ranging from 0.3125 - 0.625 mgml-1. The acetone extract was strongly bactericidal against Staphylococcus aureus OKOH3 resulting in a 2.70 Log10 reduction in counts at 1.25 mgml-1 within 4 hours of exposure and a complete elimination of the organism after 8 hours. The bactericidal vi activity of the same extract against Staphylococcus aureus OKOH1 was weak, achieving only a 2.92 Log10 reduction in counts at 1.25 mgml-1 (4× MIC) in 24 hours. In the test for interactions between the acetone extract of the seeds and antibiotics, synergistic interactions were observed largely against Gram positive organisms using the FIC indices, (indices of 0.52 - 0.875) with combinations against Gram negatives yielding largely antagonistic interactions (indices of 2.0 to 5.0). Synergy (≥ 1000 times or ≥ 3 Log10 potentiation of the bactericidal activity) against both Gram negative and Gram positive organisms was detected by time kill assays mainly involving the antibiotics tetracycline, chloramphenicol, amoxycillin and penicillin G. Combinations involving erythromycin and ciprofloxacin consistently gave antagonistic or indifferent interactions. We conclude that the acetone extract of Garcinia kola seeds possess strong bactericidal activities against both Gram positive and Gram negative organisms and can be therapeutically useful in the treatment of bacterial infections including the problematic staphylococcal wound infections. In addition, the acetone extract can be a potential source of broad spectrum resistance modifying compounds that can potentially improve the performance of antibiotics in the treatment of drug resistant infections.
- Full Text:
- Date Issued: 2007
Assessment of antibacterial potentials of Garcinia Kola seed extracts and their interactions with antibiotics
- Authors: Sibanda, Thulani
- Date: 2007
- Subjects: Drug resistance in microorganisms , Garcinia , Antibiotics
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10353/19236 , vital:43038
- Description: The antibacterial potency of the extracts of the seed of Garcinia kola (bitter kola) was investigated in this study against a panel of referenced, environmental and clinical bacterial strains. The killing rates of the active extract as well as their potential for combination antibacterial therapy with standard antibiotics were also elucidated using standard procedures. The aqueous and acetone extracts of the seed were screened for activity against 27 bacterial isolates. The aqueous extract exhibited activity mainly against Gram positive organisms with Minimum inhibitory concentration (MIC) values ranging from 5 mgml-1 – 20 mgml-1, while the acetone extract showed activity against both Gram negative and Gram positive organisms with MIC values ranging from 10 mgml-1 - 0.156 mgml-1. The acetone extract also showed rapid bactericidal activity against Staphylococcus aureus ATCC 6538 with a 3.097 Log10 reduction in counts within 4 hours at 0.3125 mgml-1 and a 1.582 Log10 reduction against Proteus vulgaris CSIR 0030 at 5 mgml-1 after 1 hour. In addition, the aqueous, methanol and acetone extracts of the seeds also exhibited activity against four clinical strains of Staphylococcus isolated from wound sepsis specimens. The MIC values for the aqueous extract were 10 mgml-1 for all the isolates while the acetone and methanol extracts had lower values ranging from 0.3125 - 0.625 mgml-1. The acetone extract was strongly bactericidal against Staphylococcus aureus OKOH3 resulting in a 2.70 Log10 reduction in counts at 1.25 mgml-1 within 4 hours of exposure and a complete elimination of the organism after 8 hours. The bactericidal activity of the same extract against Staphylococcus aureus OKOH1 was weak, achieving only a 2.92 Log10 reduction in counts at 1.25 mgml-1 (4× MIC) in 24 hours. In the test for interactions between the acetone extract of the seeds and antibiotics, synergistic interactions were observed largely against Gram positive organisms using the FIC indices, (indices of 0.52 - 0.875) with combinations against Gram negatives yielding largely antagonistic interactions (indices of 2.0 to 5.0). Synergy (≥ 1000 times or ≥ 3 Log10 potentiation of the bactericidal activity) against both Gram negative and Gram positive organisms was detected by time kill assays mainly involving the antibiotics tetracycline, chloramphenicol, amoxycillin and penicillin G. Combinations involving erythromycin and ciprofloxacin consistently gave antagonistic or indifferent interactions. We conclude that the acetone extract of Garcinia kola seeds possess strong bactericidal activities against both Gram positive and Gram negative organisms and can be therapeutically useful in the treatment of bacterial infections including the problematic staphylococcal wound infections. In addition, the acetone extract can be a potential source of broad spectrum resistance modifying compounds that can potentially improve the performance of antibiotics in the treatment of drug resistant infections. , Thesis (MSc)-- Microbiology, University of Fort Hare, 2007
- Full Text:
- Date Issued: 2007
- Authors: Sibanda, Thulani
- Date: 2007
- Subjects: Drug resistance in microorganisms , Garcinia , Antibiotics
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10353/19236 , vital:43038
- Description: The antibacterial potency of the extracts of the seed of Garcinia kola (bitter kola) was investigated in this study against a panel of referenced, environmental and clinical bacterial strains. The killing rates of the active extract as well as their potential for combination antibacterial therapy with standard antibiotics were also elucidated using standard procedures. The aqueous and acetone extracts of the seed were screened for activity against 27 bacterial isolates. The aqueous extract exhibited activity mainly against Gram positive organisms with Minimum inhibitory concentration (MIC) values ranging from 5 mgml-1 – 20 mgml-1, while the acetone extract showed activity against both Gram negative and Gram positive organisms with MIC values ranging from 10 mgml-1 - 0.156 mgml-1. The acetone extract also showed rapid bactericidal activity against Staphylococcus aureus ATCC 6538 with a 3.097 Log10 reduction in counts within 4 hours at 0.3125 mgml-1 and a 1.582 Log10 reduction against Proteus vulgaris CSIR 0030 at 5 mgml-1 after 1 hour. In addition, the aqueous, methanol and acetone extracts of the seeds also exhibited activity against four clinical strains of Staphylococcus isolated from wound sepsis specimens. The MIC values for the aqueous extract were 10 mgml-1 for all the isolates while the acetone and methanol extracts had lower values ranging from 0.3125 - 0.625 mgml-1. The acetone extract was strongly bactericidal against Staphylococcus aureus OKOH3 resulting in a 2.70 Log10 reduction in counts at 1.25 mgml-1 within 4 hours of exposure and a complete elimination of the organism after 8 hours. The bactericidal activity of the same extract against Staphylococcus aureus OKOH1 was weak, achieving only a 2.92 Log10 reduction in counts at 1.25 mgml-1 (4× MIC) in 24 hours. In the test for interactions between the acetone extract of the seeds and antibiotics, synergistic interactions were observed largely against Gram positive organisms using the FIC indices, (indices of 0.52 - 0.875) with combinations against Gram negatives yielding largely antagonistic interactions (indices of 2.0 to 5.0). Synergy (≥ 1000 times or ≥ 3 Log10 potentiation of the bactericidal activity) against both Gram negative and Gram positive organisms was detected by time kill assays mainly involving the antibiotics tetracycline, chloramphenicol, amoxycillin and penicillin G. Combinations involving erythromycin and ciprofloxacin consistently gave antagonistic or indifferent interactions. We conclude that the acetone extract of Garcinia kola seeds possess strong bactericidal activities against both Gram positive and Gram negative organisms and can be therapeutically useful in the treatment of bacterial infections including the problematic staphylococcal wound infections. In addition, the acetone extract can be a potential source of broad spectrum resistance modifying compounds that can potentially improve the performance of antibiotics in the treatment of drug resistant infections. , Thesis (MSc)-- Microbiology, University of Fort Hare, 2007
- Full Text:
- Date Issued: 2007
Antimicrobial resistance patterns in a Port Elizabeth hospital
- Authors: Meiring, Jillian A
- Date: 1993
- Subjects: Antibiotics , Drug resistance in microorganisms , Hospitals -- Drug distribution systems -- South Africa -- Port Elizabeth
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4043 , http://hdl.handle.net/10962/d1004104 , Antibiotics , Drug resistance in microorganisms , Hospitals -- Drug distribution systems -- South Africa -- Port Elizabeth
- Description: Antibiotic resistance in clinical bacterial isolates remains an ongoing problem requiring continuous monitoring to effect some form of control. Comparative studies have not been previously reported for the Eastern Cape Region, South Africa and this study was undertaken to monitor resistance patterns in clinical isolates from Provincial Hospital, Port Elizabeth. Over the three year period 1989 to 1991, 9888 susceptibility results from isolates examined in the SAIMR pathology laboratory were analysed and collated using a stand-alone computer program. Resistance patterns for a range of nineteen antibiotics were collated for isolates from various sampling points within the hospital. Results were reported as resistance patterns in individually isolated species. Levels of resistance in each species were compared to those reported from South Africa and abroad, and changing patterns of resistance were noted within the three year period at the Provincial Hospital, Port Elizabeth.
- Full Text:
- Date Issued: 1993
- Authors: Meiring, Jillian A
- Date: 1993
- Subjects: Antibiotics , Drug resistance in microorganisms , Hospitals -- Drug distribution systems -- South Africa -- Port Elizabeth
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4043 , http://hdl.handle.net/10962/d1004104 , Antibiotics , Drug resistance in microorganisms , Hospitals -- Drug distribution systems -- South Africa -- Port Elizabeth
- Description: Antibiotic resistance in clinical bacterial isolates remains an ongoing problem requiring continuous monitoring to effect some form of control. Comparative studies have not been previously reported for the Eastern Cape Region, South Africa and this study was undertaken to monitor resistance patterns in clinical isolates from Provincial Hospital, Port Elizabeth. Over the three year period 1989 to 1991, 9888 susceptibility results from isolates examined in the SAIMR pathology laboratory were analysed and collated using a stand-alone computer program. Resistance patterns for a range of nineteen antibiotics were collated for isolates from various sampling points within the hospital. Results were reported as resistance patterns in individually isolated species. Levels of resistance in each species were compared to those reported from South Africa and abroad, and changing patterns of resistance were noted within the three year period at the Provincial Hospital, Port Elizabeth.
- Full Text:
- Date Issued: 1993