Effects of CO2-induced ocean acidification on the early development, growth, survival and skeletogenesis of the estuarine-dependant sciaenid Argyrosomus japonicus
- Authors: Erasmus, Bernard
- Date: 2018
- Subjects: Argyrosomus , Argyrosomus -- Growth , Argyrosomus -- Mortality , Argyrosomus -- Ecology , Argyrosomus -- Physiology , Ocean acidification , Marine ecology -- South Africa , Carbon dioxide -- Physiological effect
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/60585 , vital:27799
- Description: Although it is increasingly accepted that ocean acidification poses a considerable threat to marine organisms, little is known about the likely response of fishes to this phenomenon. While initial research concluded that adult fishes may be tolerant to changes predicted in the next 300 years, the response of early life stages to end-of-century CO2 levels (~ 1100 µatm according to the IPCC RCP 8.5) remains unclear. To date, literature on the early growth and survival of fishes has yielded conflicting results, suggesting that vulnerability may be species dependant. The paucity of ocean acidification research on fishes is particularly evident when one considers larval skeletogenesis, with no robust studies on its impacts on bone and cartilage development. This study addresses the early life embryogenesis, hatching success, growth, skeletogenesis and survival of an estuarine-dependant species. Dusky kob (Argyrosomus japonicus) were reared in a control (pCO2 = 327.50 ± 80.07 qatm at pH 8.15), intermediate (pCO2 477.40 ± 59.46 qatm at pH 8.03) and high pCO2 treatment (pCO2 910.20 ± 136.45 qatm at pH 7.78) from egg to 29 days post-hatch (dph). Sixty individuals from each treatment were sacrificed at the egg stage and at 2, 6, 13, 18, 21 and 26 dph, measured and stained using an acid-free double- staining solution to prevent the deterioration of calcified matrices in fragile larval skeletons. The proportion of bone and cartilage was quantified at each stage using a novel pixel-counting method. Growth and skeletal development were identical between treatments until the onset of metamorphosis (21 dph). However, from the metamorphosis stage, the growth and skeletal development rate was significantly faster in the intermediate treatment and significantly slower in the high treatment when compared to the control treatment. By 26 dph, A. japonicus reared in high pCO2 were, on average, 47.2% smaller than the control treatment, and the relative proportion of bone in the body was 45.3% lower in the high pCO2 treatment when compared with the control. In addition, none of the fish in the high pCO2 treatment survived after 26 dph. It appears that the combination of the increased energy requirements during metamorphosis and the increased energy cost associated with acid-base regulation may account for reduced growth, skeletogenesis and poor survival in high pCO2. Regardless of the driver, the results of this study suggest that the pCO2 levels predicted for the end of the century may have negative effects on the growth, skeletal development, and survival during metamorphosis.
- Full Text:
- Date Issued: 2018
- Authors: Erasmus, Bernard
- Date: 2018
- Subjects: Argyrosomus , Argyrosomus -- Growth , Argyrosomus -- Mortality , Argyrosomus -- Ecology , Argyrosomus -- Physiology , Ocean acidification , Marine ecology -- South Africa , Carbon dioxide -- Physiological effect
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/60585 , vital:27799
- Description: Although it is increasingly accepted that ocean acidification poses a considerable threat to marine organisms, little is known about the likely response of fishes to this phenomenon. While initial research concluded that adult fishes may be tolerant to changes predicted in the next 300 years, the response of early life stages to end-of-century CO2 levels (~ 1100 µatm according to the IPCC RCP 8.5) remains unclear. To date, literature on the early growth and survival of fishes has yielded conflicting results, suggesting that vulnerability may be species dependant. The paucity of ocean acidification research on fishes is particularly evident when one considers larval skeletogenesis, with no robust studies on its impacts on bone and cartilage development. This study addresses the early life embryogenesis, hatching success, growth, skeletogenesis and survival of an estuarine-dependant species. Dusky kob (Argyrosomus japonicus) were reared in a control (pCO2 = 327.50 ± 80.07 qatm at pH 8.15), intermediate (pCO2 477.40 ± 59.46 qatm at pH 8.03) and high pCO2 treatment (pCO2 910.20 ± 136.45 qatm at pH 7.78) from egg to 29 days post-hatch (dph). Sixty individuals from each treatment were sacrificed at the egg stage and at 2, 6, 13, 18, 21 and 26 dph, measured and stained using an acid-free double- staining solution to prevent the deterioration of calcified matrices in fragile larval skeletons. The proportion of bone and cartilage was quantified at each stage using a novel pixel-counting method. Growth and skeletal development were identical between treatments until the onset of metamorphosis (21 dph). However, from the metamorphosis stage, the growth and skeletal development rate was significantly faster in the intermediate treatment and significantly slower in the high treatment when compared to the control treatment. By 26 dph, A. japonicus reared in high pCO2 were, on average, 47.2% smaller than the control treatment, and the relative proportion of bone in the body was 45.3% lower in the high pCO2 treatment when compared with the control. In addition, none of the fish in the high pCO2 treatment survived after 26 dph. It appears that the combination of the increased energy requirements during metamorphosis and the increased energy cost associated with acid-base regulation may account for reduced growth, skeletogenesis and poor survival in high pCO2. Regardless of the driver, the results of this study suggest that the pCO2 levels predicted for the end of the century may have negative effects on the growth, skeletal development, and survival during metamorphosis.
- Full Text:
- Date Issued: 2018
The metabolic physiology of early stage Argyrosomus japonicus with insight into the potential effects of pCO2 induced ocean acidification
- Authors: Edworthy, Carla
- Date: 2018
- Subjects: Argyrosomus , Argyrosomus -- Growth , Argyrosomus -- Mortality , Argyrosomus -- Larvae -- Ecology , Ocean acidification , Marine ecology -- South Africa , Carbon dioxide -- Physiological effect
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/51417 , vital:26094
- Description: Ocean acidification is a phenomenon associated with global change and anthropogenic CO2 emissions that is changing the chemistry of seawater. These changes result in elevated pCO2 and reduced pH in seawater and this is impacting marine organisms in various ways. Marine fishes are considered generally tolerant to conditions of ocean acidification; however, these assumptions are based on juvenile and adult fish tolerance and the larval stages have not been frequently assessed. Furthermore, it has been suggested that temperate species, particularly those with an estuarine association, may be tolerant to variable CO2 and pH. This study used an eco-physiological approach to understand how the early life stages of Argyrosomus japonicus, an estuarine dependent marine fisheries species found in warm-temperate regions, may be impacted by ocean acidification. The metabolic response of early stage larvae (hatching to early juvenile stage) was assessed under conditions of elevated pCO2 and reduced pH in a controlled laboratory setting. Small volume static respirometry was used to determine the oxygen consumption rate of larvae raised in three pCO2 treatments including a low (pCO2 = 327.50 ± 80.07 µatm at pH 8.15), moderate (pCO2 477.40 ± 59.46 µatm at pH 8.03) and high treatment (PCO2 910.20 ± 136.45 µatm at pH 7.78). These treatment levels were relevant to the present (low) and projected conditions of ocean acidification for the years 2050 (moderate) and 2100 (high). Prior to experimentation with ocean acidification treatments, baseline metabolic rates and diurnal variation in oxygen consumption rates in early stage A. japonicus was determined. Distinct ontogenetic structuring of metabolic rates was observed in early stage A. japonicus, with no cyclical fluctuations in metabolic rate occurring during the 24 hour photoperiodic cycle. Pre-flexion larvae showed no metabolic response to ocean acidification treatments; however post-flexion stage larvae showed metabolic depression of standard metabolic rate in the moderate (32.5%) and high (9.5%) pCO2 treatments (P = 0.02). Larvae raised in the high pCO2 treatment also showed high levels of mortality with no individuals surviving past the post-flexion stage. Larvae raised in the moderate pCO2 treatment were unaffected. This study concluded that ocean acidification conditions expected for the end of the century will have significant impacts on the metabolism of early stage A. japonicus, which may result in reduced growth, retardation of skeletal development and ultimately survival as a result of increased mortality. Furthermore, the timing of reduced metabolic scope will significantly impact the recruitment ability of A. japonicus larvae into estuarine habitats. This could ultimately impact the sustainability of A. japonicus populations. Most importantly, this study highlighted the need to consider the combined effect of ontogeny and life-history strategy when assessing the vulnerability of species to ocean acidification.
- Full Text:
- Date Issued: 2018
- Authors: Edworthy, Carla
- Date: 2018
- Subjects: Argyrosomus , Argyrosomus -- Growth , Argyrosomus -- Mortality , Argyrosomus -- Larvae -- Ecology , Ocean acidification , Marine ecology -- South Africa , Carbon dioxide -- Physiological effect
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/51417 , vital:26094
- Description: Ocean acidification is a phenomenon associated with global change and anthropogenic CO2 emissions that is changing the chemistry of seawater. These changes result in elevated pCO2 and reduced pH in seawater and this is impacting marine organisms in various ways. Marine fishes are considered generally tolerant to conditions of ocean acidification; however, these assumptions are based on juvenile and adult fish tolerance and the larval stages have not been frequently assessed. Furthermore, it has been suggested that temperate species, particularly those with an estuarine association, may be tolerant to variable CO2 and pH. This study used an eco-physiological approach to understand how the early life stages of Argyrosomus japonicus, an estuarine dependent marine fisheries species found in warm-temperate regions, may be impacted by ocean acidification. The metabolic response of early stage larvae (hatching to early juvenile stage) was assessed under conditions of elevated pCO2 and reduced pH in a controlled laboratory setting. Small volume static respirometry was used to determine the oxygen consumption rate of larvae raised in three pCO2 treatments including a low (pCO2 = 327.50 ± 80.07 µatm at pH 8.15), moderate (pCO2 477.40 ± 59.46 µatm at pH 8.03) and high treatment (PCO2 910.20 ± 136.45 µatm at pH 7.78). These treatment levels were relevant to the present (low) and projected conditions of ocean acidification for the years 2050 (moderate) and 2100 (high). Prior to experimentation with ocean acidification treatments, baseline metabolic rates and diurnal variation in oxygen consumption rates in early stage A. japonicus was determined. Distinct ontogenetic structuring of metabolic rates was observed in early stage A. japonicus, with no cyclical fluctuations in metabolic rate occurring during the 24 hour photoperiodic cycle. Pre-flexion larvae showed no metabolic response to ocean acidification treatments; however post-flexion stage larvae showed metabolic depression of standard metabolic rate in the moderate (32.5%) and high (9.5%) pCO2 treatments (P = 0.02). Larvae raised in the high pCO2 treatment also showed high levels of mortality with no individuals surviving past the post-flexion stage. Larvae raised in the moderate pCO2 treatment were unaffected. This study concluded that ocean acidification conditions expected for the end of the century will have significant impacts on the metabolism of early stage A. japonicus, which may result in reduced growth, retardation of skeletal development and ultimately survival as a result of increased mortality. Furthermore, the timing of reduced metabolic scope will significantly impact the recruitment ability of A. japonicus larvae into estuarine habitats. This could ultimately impact the sustainability of A. japonicus populations. Most importantly, this study highlighted the need to consider the combined effect of ontogeny and life-history strategy when assessing the vulnerability of species to ocean acidification.
- Full Text:
- Date Issued: 2018
Salinity induced physiological responses in juvenile dusky kob, Argyrosomus japonicus (Sciaenidae)
- Authors: Bernatzeder, Andrea Katinka
- Date: 2009
- Subjects: Osmoregulation , Argyrosomus -- Effects of salt on -- South Africa , Sciaenidae -- Effects of salt on -- South Africa , Argyrosomus -- Physiology , Sciaenidae -- Physiology , Fishes -- Physiology , Biological control systems , Marine ecology -- South Africa , Fishery management -- South Africa , Mariculture -- South Africa
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5318 , http://hdl.handle.net/10962/d1005163 , Osmoregulation , Argyrosomus -- Effects of salt on -- South Africa , Sciaenidae -- Effects of salt on -- South Africa , Argyrosomus -- Physiology , Sciaenidae -- Physiology , Fishes -- Physiology , Biological control systems , Marine ecology -- South Africa , Fishery management -- South Africa , Mariculture -- South Africa
- Description: Fisheries management regulations for dusky kob Argyrosomus japonicus, an important commercial and recreational fisheries species, have failed and the stock is considered collapsed. It is important to take an ecosystems approach to management which includes understanding the effect of environmental factors on recruitment, abundance and distribution. The distribution of early juveniles (20-150 mm TL) in the wild appears to be restricted to the upper reaches of estuaries at salinities below 5 psu. Food availability could not explain the distribution of early juveniles. The aim of this study was to investigate the role of salinity on the distribution of early juvenile dusky kob (<150 mm TL) by examining physiological responses of juveniles exposed to a range of salinities under laboratory conditions. The hypothesis was that the physiological functioning of early juveniles would be optimised at the reduced salinities which they naturally occur at. The objectives of this study were to investigate the effect of salinity on: i) plasma osmolality; ii) growth, food conversion ratio and condition factor; and iii) gill histology with emphasis on chloride cell size and number. A preliminary study was undertaken to determine whether the use of 2-phenoxyethanol had an effect on plasma osmolality. Juveniles pithed prior to blood sampling were used as the control. Plasma osmolality was not affected by exposure or duration of exposure (2, 4, 6, 8, 10 min) to 2-phenoxyethanol. The ability of teleosts to regulate plasma osmolality over a wide range of salinities indicates their degree of ‘physiological euryhalinity’. Plasma osmolality of juveniles exposed to 5, 12 and 35 psu was measured every two weeks over a total of six weeks. Although juveniles were able to regulate plasma osmolality over the duration of the experiment, plasma osmolality at 5 and 12 psu was significantly lower than in fish maintained at 35 psu. Growth is used as an indicator of the relative energy used for osmoregulation at different salinities, as the energy used for osmoregulation becomes unavailable for growth. A nineweek growth experiment was conducted on juveniles exposed to 5, 12 and 35 psu. Juveniles grew and survived at all three salinities. However, growth of juveniles at 5 psu was significantly lower than at 12 and 35 psu. Other than a significantly greater weight gain at 35 psu relative to 12 psu, there was no significant difference in specific growth and length gain between juveniles at 12 and 35 psu. Food conversion ratio and condition factor at 12 and 35 psu were not significantly different, but food conversion ratio and condition factor at 5 psu was significantly greater and lower than at 35 psu respectively. In fish, gills are considered the major organ involved in osmoregulation. Within the gills, chloride cells are the predominant site of ion exchange which is driven by the Na⁺, K⁺- ATPase enzyme. Gill samples of juveniles exposed to 5, 12 and 35 psu for six weeks were examined histologically using light microscopy. Chloride cells of juveniles maintained at 5 psu were significantly more abundant than in juveniles at 12 and 35 psu. Chloride cells of juveniles at 5 psu were significantly larger than in juveniles kept at 12 psu, but not significantly different to those of juveniles kept at 35 psu. The ability of the juvenile fish to regulate plasma osmolality indicates that they are 'physiologically euryhaline', but the reduced growth and proliferation of chloride cells at 5 psu suggests that energy expenditure for osmoregulation is increased at hypoosmotic salinities. Salinity induced physiological responses could therefore not explain the natural distribution of early juvenile dusky kob and it is proposed that other environmental factors (e.g. temperature) are also important. It is also hypothesised that the high conductivity of an estuary in South Africa, to which our understanding is limited, may negate the effect of reduced salinity. Although freshwater input into estuaries is an important factor, further investigations to explain the distribution and abundance of early juveniles is required to make management recommendations. Dusky kob is also becoming an increasingly popular aquaculture species in South Africa. In this regard, early juvenile dusky kob can be grown at salinities as low as 12 psu without negatively affecting growth and production.
- Full Text:
- Date Issued: 2009
- Authors: Bernatzeder, Andrea Katinka
- Date: 2009
- Subjects: Osmoregulation , Argyrosomus -- Effects of salt on -- South Africa , Sciaenidae -- Effects of salt on -- South Africa , Argyrosomus -- Physiology , Sciaenidae -- Physiology , Fishes -- Physiology , Biological control systems , Marine ecology -- South Africa , Fishery management -- South Africa , Mariculture -- South Africa
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5318 , http://hdl.handle.net/10962/d1005163 , Osmoregulation , Argyrosomus -- Effects of salt on -- South Africa , Sciaenidae -- Effects of salt on -- South Africa , Argyrosomus -- Physiology , Sciaenidae -- Physiology , Fishes -- Physiology , Biological control systems , Marine ecology -- South Africa , Fishery management -- South Africa , Mariculture -- South Africa
- Description: Fisheries management regulations for dusky kob Argyrosomus japonicus, an important commercial and recreational fisheries species, have failed and the stock is considered collapsed. It is important to take an ecosystems approach to management which includes understanding the effect of environmental factors on recruitment, abundance and distribution. The distribution of early juveniles (20-150 mm TL) in the wild appears to be restricted to the upper reaches of estuaries at salinities below 5 psu. Food availability could not explain the distribution of early juveniles. The aim of this study was to investigate the role of salinity on the distribution of early juvenile dusky kob (<150 mm TL) by examining physiological responses of juveniles exposed to a range of salinities under laboratory conditions. The hypothesis was that the physiological functioning of early juveniles would be optimised at the reduced salinities which they naturally occur at. The objectives of this study were to investigate the effect of salinity on: i) plasma osmolality; ii) growth, food conversion ratio and condition factor; and iii) gill histology with emphasis on chloride cell size and number. A preliminary study was undertaken to determine whether the use of 2-phenoxyethanol had an effect on plasma osmolality. Juveniles pithed prior to blood sampling were used as the control. Plasma osmolality was not affected by exposure or duration of exposure (2, 4, 6, 8, 10 min) to 2-phenoxyethanol. The ability of teleosts to regulate plasma osmolality over a wide range of salinities indicates their degree of ‘physiological euryhalinity’. Plasma osmolality of juveniles exposed to 5, 12 and 35 psu was measured every two weeks over a total of six weeks. Although juveniles were able to regulate plasma osmolality over the duration of the experiment, plasma osmolality at 5 and 12 psu was significantly lower than in fish maintained at 35 psu. Growth is used as an indicator of the relative energy used for osmoregulation at different salinities, as the energy used for osmoregulation becomes unavailable for growth. A nineweek growth experiment was conducted on juveniles exposed to 5, 12 and 35 psu. Juveniles grew and survived at all three salinities. However, growth of juveniles at 5 psu was significantly lower than at 12 and 35 psu. Other than a significantly greater weight gain at 35 psu relative to 12 psu, there was no significant difference in specific growth and length gain between juveniles at 12 and 35 psu. Food conversion ratio and condition factor at 12 and 35 psu were not significantly different, but food conversion ratio and condition factor at 5 psu was significantly greater and lower than at 35 psu respectively. In fish, gills are considered the major organ involved in osmoregulation. Within the gills, chloride cells are the predominant site of ion exchange which is driven by the Na⁺, K⁺- ATPase enzyme. Gill samples of juveniles exposed to 5, 12 and 35 psu for six weeks were examined histologically using light microscopy. Chloride cells of juveniles maintained at 5 psu were significantly more abundant than in juveniles at 12 and 35 psu. Chloride cells of juveniles at 5 psu were significantly larger than in juveniles kept at 12 psu, but not significantly different to those of juveniles kept at 35 psu. The ability of the juvenile fish to regulate plasma osmolality indicates that they are 'physiologically euryhaline', but the reduced growth and proliferation of chloride cells at 5 psu suggests that energy expenditure for osmoregulation is increased at hypoosmotic salinities. Salinity induced physiological responses could therefore not explain the natural distribution of early juvenile dusky kob and it is proposed that other environmental factors (e.g. temperature) are also important. It is also hypothesised that the high conductivity of an estuary in South Africa, to which our understanding is limited, may negate the effect of reduced salinity. Although freshwater input into estuaries is an important factor, further investigations to explain the distribution and abundance of early juveniles is required to make management recommendations. Dusky kob is also becoming an increasingly popular aquaculture species in South Africa. In this regard, early juvenile dusky kob can be grown at salinities as low as 12 psu without negatively affecting growth and production.
- Full Text:
- Date Issued: 2009
The feasibility of stock enhancement as a management tool for dusky kob (Argyrosomus japonicus) in South Africa
- Authors: Palmer, Ryan Michael
- Date: 2008
- Subjects: Argyrosomus -- South Africa , Argyrosomus -- Genetics , Fishery management -- South Africa , Fish stocking -- South Africa , Fisheries -- South Africa , Marine ecology -- South Africa , Fish culture -- South Africa
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5281 , http://hdl.handle.net/10962/d1005125 , Argyrosomus -- South Africa , Argyrosomus -- Genetics , Fishery management -- South Africa , Fish stocking -- South Africa , Fisheries -- South Africa , Marine ecology -- South Africa , Fish culture -- South Africa
- Description: The dusky kob, Argyrosomus japonicus, is a popular South African “line fish” whose stocks have dwindled to dangerously low levels of between 1% and 4.5% of pristine spawner biomass per recruit. A. japonicus stocks are currently managed by means of minimum size restrictions and daily bag limits, and as a result of the inability of these measures to facilitate the recovery of the species over a realistic time frame, the need for an alternative management plan has become apparent. Given the status of the stock and management regime, stock enhancement appears to be an appropriate option to be investigated. This study evaluates the feasibility of stock enhancement as a possible management tool to assist with the recovery of this important South African linefish species. By evaluating the genetic and ecological implications related to stock enhancement, identifying a suitable tagging method for post-release monitoring, and evaluating the economic feasibility of such a programme, any fatal flaws would become immediately apparent. This coupled with the required framework for the development of a management plan for stock enhancement of A. japonicus provides direction further research and actions required in order to utilise stock enhancement as a management tool. Due to the nature of stock enhancement, there are several ecological and genetic issues that arise from such a programme. These issues were reviewed and the issues that were relevant to stock enhancement of A. japonicus identified. Ecological concerns that arose included those of competition, disease and seed quality, while genetic issues were concerned mainly in the possible loss of genetic variability and consequent reduction in fitness of the stock. Fortunately the technology exists to evaluate the effects and likelihood of these problems occurring as well as to minimise the likelihood of them occurring. By taking a scientific approach to stock enhancement, hatchery management, and release strategies can be manipulated in such a way as to minimise any negative effects that may be caused. Both ecological and genetic effects of stocking indicate a need for post-release monitoring of stock enhancement programmes. Stock enhancement requires a post-release monitoring programme, which in turn relies on an ability to distinguish between hatchery reared and wild fish. A study was conducted to evaluate the suitability of coded wire tags (CWT), visual implant fluorescent elastomers (VIFE), and oxytetracycline (OTC) as a means of distinguishing between hatchery reared and wild A. japonicus, for the purpose of a post-release monitoring programme. OTC appeared to be the most suitable as it produced 100% retention over a five month period compared to 62% and 61% for VIFE and CWT respectively. OTC is therefore suggested as a tagging method for the purpose of post-release monitoring of the stock enhancement of A. japonicus. To evaluate a possible funding option for stock enhancement of A. japonicus in South Africa, a willingness-to-pay survey, based on a “user pays” approach using recreational fishing permits as a vehicle for payment, included 102 recreational anglers in the Plettenberg Bay area. The survey showed that generally anglers were willing to pay more than the current amount for the recreational fishing permit. This promising result, coupled with the fact that there are approximately 450 000 recreational anglers leads to the belief that there is potential for a substantial increase in the funds generated for the Marine Living Resources Fund through recreational anglers. Stock enhancement should not be ruled out on the basis of economic feasibility yet as there is potential for it to be sustained by the users of the resource. An A. japonicus juvenile production costing model was created taking into account setup and running costs of a hatchery for A. japonicus, based on known parameters from existing facilities, and adjusting them to meet the requirements of a stock enhancement facility. Estimates varied according to the number and size of fish for release (values which can only be decided upon after further research), with setup estimated to be between R 10 000 000 and R 30 000 000 and annual running costs between R 2 400 000 and R 6 700 000 annually. These figures were dependant on the size and number of fish being produced, with production ranging between 100 000 and 5 000 000 fish of between 50 mm and 150 mm, and a broodstock of 150 individuals. Given the need for alternative management of A. japonicus in South Africa and the lack of evidence to suggest that it is an unfeasible option, this project has found no reason why further investigation into the use of stock enhancement for the management of A. japonicus should not proceed further provided the fishery is shown to be recruit limited. The technology and ability to overcome possible ecological and genetic problems exists, a suitable means of tagging for post-release monitoring exists, as does a realistic funding option. There is a substantial amount of research that must be done prior to stocking, for which a base framework is provided.
- Full Text:
- Date Issued: 2008
- Authors: Palmer, Ryan Michael
- Date: 2008
- Subjects: Argyrosomus -- South Africa , Argyrosomus -- Genetics , Fishery management -- South Africa , Fish stocking -- South Africa , Fisheries -- South Africa , Marine ecology -- South Africa , Fish culture -- South Africa
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5281 , http://hdl.handle.net/10962/d1005125 , Argyrosomus -- South Africa , Argyrosomus -- Genetics , Fishery management -- South Africa , Fish stocking -- South Africa , Fisheries -- South Africa , Marine ecology -- South Africa , Fish culture -- South Africa
- Description: The dusky kob, Argyrosomus japonicus, is a popular South African “line fish” whose stocks have dwindled to dangerously low levels of between 1% and 4.5% of pristine spawner biomass per recruit. A. japonicus stocks are currently managed by means of minimum size restrictions and daily bag limits, and as a result of the inability of these measures to facilitate the recovery of the species over a realistic time frame, the need for an alternative management plan has become apparent. Given the status of the stock and management regime, stock enhancement appears to be an appropriate option to be investigated. This study evaluates the feasibility of stock enhancement as a possible management tool to assist with the recovery of this important South African linefish species. By evaluating the genetic and ecological implications related to stock enhancement, identifying a suitable tagging method for post-release monitoring, and evaluating the economic feasibility of such a programme, any fatal flaws would become immediately apparent. This coupled with the required framework for the development of a management plan for stock enhancement of A. japonicus provides direction further research and actions required in order to utilise stock enhancement as a management tool. Due to the nature of stock enhancement, there are several ecological and genetic issues that arise from such a programme. These issues were reviewed and the issues that were relevant to stock enhancement of A. japonicus identified. Ecological concerns that arose included those of competition, disease and seed quality, while genetic issues were concerned mainly in the possible loss of genetic variability and consequent reduction in fitness of the stock. Fortunately the technology exists to evaluate the effects and likelihood of these problems occurring as well as to minimise the likelihood of them occurring. By taking a scientific approach to stock enhancement, hatchery management, and release strategies can be manipulated in such a way as to minimise any negative effects that may be caused. Both ecological and genetic effects of stocking indicate a need for post-release monitoring of stock enhancement programmes. Stock enhancement requires a post-release monitoring programme, which in turn relies on an ability to distinguish between hatchery reared and wild fish. A study was conducted to evaluate the suitability of coded wire tags (CWT), visual implant fluorescent elastomers (VIFE), and oxytetracycline (OTC) as a means of distinguishing between hatchery reared and wild A. japonicus, for the purpose of a post-release monitoring programme. OTC appeared to be the most suitable as it produced 100% retention over a five month period compared to 62% and 61% for VIFE and CWT respectively. OTC is therefore suggested as a tagging method for the purpose of post-release monitoring of the stock enhancement of A. japonicus. To evaluate a possible funding option for stock enhancement of A. japonicus in South Africa, a willingness-to-pay survey, based on a “user pays” approach using recreational fishing permits as a vehicle for payment, included 102 recreational anglers in the Plettenberg Bay area. The survey showed that generally anglers were willing to pay more than the current amount for the recreational fishing permit. This promising result, coupled with the fact that there are approximately 450 000 recreational anglers leads to the belief that there is potential for a substantial increase in the funds generated for the Marine Living Resources Fund through recreational anglers. Stock enhancement should not be ruled out on the basis of economic feasibility yet as there is potential for it to be sustained by the users of the resource. An A. japonicus juvenile production costing model was created taking into account setup and running costs of a hatchery for A. japonicus, based on known parameters from existing facilities, and adjusting them to meet the requirements of a stock enhancement facility. Estimates varied according to the number and size of fish for release (values which can only be decided upon after further research), with setup estimated to be between R 10 000 000 and R 30 000 000 and annual running costs between R 2 400 000 and R 6 700 000 annually. These figures were dependant on the size and number of fish being produced, with production ranging between 100 000 and 5 000 000 fish of between 50 mm and 150 mm, and a broodstock of 150 individuals. Given the need for alternative management of A. japonicus in South Africa and the lack of evidence to suggest that it is an unfeasible option, this project has found no reason why further investigation into the use of stock enhancement for the management of A. japonicus should not proceed further provided the fishery is shown to be recruit limited. The technology and ability to overcome possible ecological and genetic problems exists, a suitable means of tagging for post-release monitoring exists, as does a realistic funding option. There is a substantial amount of research that must be done prior to stocking, for which a base framework is provided.
- Full Text:
- Date Issued: 2008
Nutrient dynamics in and offshore of two permanently open South African estuaries with contrasting fresh water inflow
- Authors: Jennings, Michael Evan
- Date: 2006
- Subjects: Estuaries -- South Africa -- Great Fish River , Estuaries -- South Africa -- Kariega River , Marine ecology -- South Africa , Freshwater ecology -- South Africa , Rivers -- Environmental aspects , Water quality management -- South Africa , Water -- Analysis
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5735 , http://hdl.handle.net/10962/d1005421 , Estuaries -- South Africa -- Great Fish River , Estuaries -- South Africa -- Kariega River , Marine ecology -- South Africa , Freshwater ecology -- South Africa , Rivers -- Environmental aspects , Water quality management -- South Africa , Water -- Analysis
- Description: The nutrient dynamics in two contrasting estuaries and in the adjacent nearshore environment along the south-east coast of South Africa was investigated seasonally. Due to an inter-basin transfer of water from the Gariep Dam to the Great Fish River, the Great Fish estuary is a fresh water dominated, terrestrially driven system with an annual fresh water inflow of 250 – 650 x 10⁶ m³ per year. In contrast, the Kariega estuary is a fresh water deprived, marine dominated system with a fresh water inflow estimated at 2.5 – 35 x 10⁶ m³per year. The reduced fresh water inflow into the estuary is attributed to regular impoundments along the Kariega River. Water samples were collected from surface and subsurface layers along the length of the estuaries as well as from a series of transects occupied in the nearshore environment. Samples were analysed for nitrate, nitrite, ammonium, phosphate and silicate. Temperature and salinity were recorded at each station. A Land-Ocean Interactions in the Coastal Zone (LOICZ) budget was constructed for each estuary to describe the role of ecosystem-level metabolism as either a sink or a source of phosphorus, nitrogen and carbon. Seasonal variation in physico-chemical properties and nutrient concentrations in the Kariega estuary was minimal due to constant low inflow, while in the Great Fish estuary, concentrations varied in response to changes in flow rate. Nutrient concentrations were consistently higher in the Great Fish estuary than in the Kariega estuary, largely reflecting differences in fresh water inflow. During periods of high flow (32.92 m³.s⁻¹in the Great Fish River) dissolved inorganic nitrogen (DIN) concentrations in the Great Fish estuary were an order of magnitude higher than those recorded in the Kariega estuary. Results of the LOICZ budgeting procedures revealed that in spite of the contrasting hydrodynamic features, the estuaries behave in largely the same manner – both predominantly sources of nutrients with heterotrophic processes dominating over autotrophic actions and both were net denitrifyers during all surveys. This was, however, due to different sets of processes operating in the two estuaries, namely low nutrient concentrations resulting in microbial activity in the Kariega estuary, and riverine influx of nutrients and phytoplankton combined with a short residence time of the water in the Great Fish estuary. In the marine nearshore environment, higher nutrient concentrations were recorded adjacent to the Great Fish estuary than offshore of the Kariega estuary. This was due to a surface plume of less saline water leaving the Great Fish estuary, which acted as an ‘outweller’ of nutrients. Offshore of the Kariega estuary, on the other hand, the nutrient concentrations were characteristic of marine waters due to a lack of fresh water outflow from the estuary. Nutrient concentrations in the marine environment adjacent to the Kariega estuary were, at times, higher than those recorded within the estuary. This observation supports previous statements which suggest that the Kariega estuary is not an ‘outweller’ of dissolved nutrients and particulate material, but rather an extension of the marine environment.
- Full Text:
- Date Issued: 2006
- Authors: Jennings, Michael Evan
- Date: 2006
- Subjects: Estuaries -- South Africa -- Great Fish River , Estuaries -- South Africa -- Kariega River , Marine ecology -- South Africa , Freshwater ecology -- South Africa , Rivers -- Environmental aspects , Water quality management -- South Africa , Water -- Analysis
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5735 , http://hdl.handle.net/10962/d1005421 , Estuaries -- South Africa -- Great Fish River , Estuaries -- South Africa -- Kariega River , Marine ecology -- South Africa , Freshwater ecology -- South Africa , Rivers -- Environmental aspects , Water quality management -- South Africa , Water -- Analysis
- Description: The nutrient dynamics in two contrasting estuaries and in the adjacent nearshore environment along the south-east coast of South Africa was investigated seasonally. Due to an inter-basin transfer of water from the Gariep Dam to the Great Fish River, the Great Fish estuary is a fresh water dominated, terrestrially driven system with an annual fresh water inflow of 250 – 650 x 10⁶ m³ per year. In contrast, the Kariega estuary is a fresh water deprived, marine dominated system with a fresh water inflow estimated at 2.5 – 35 x 10⁶ m³per year. The reduced fresh water inflow into the estuary is attributed to regular impoundments along the Kariega River. Water samples were collected from surface and subsurface layers along the length of the estuaries as well as from a series of transects occupied in the nearshore environment. Samples were analysed for nitrate, nitrite, ammonium, phosphate and silicate. Temperature and salinity were recorded at each station. A Land-Ocean Interactions in the Coastal Zone (LOICZ) budget was constructed for each estuary to describe the role of ecosystem-level metabolism as either a sink or a source of phosphorus, nitrogen and carbon. Seasonal variation in physico-chemical properties and nutrient concentrations in the Kariega estuary was minimal due to constant low inflow, while in the Great Fish estuary, concentrations varied in response to changes in flow rate. Nutrient concentrations were consistently higher in the Great Fish estuary than in the Kariega estuary, largely reflecting differences in fresh water inflow. During periods of high flow (32.92 m³.s⁻¹in the Great Fish River) dissolved inorganic nitrogen (DIN) concentrations in the Great Fish estuary were an order of magnitude higher than those recorded in the Kariega estuary. Results of the LOICZ budgeting procedures revealed that in spite of the contrasting hydrodynamic features, the estuaries behave in largely the same manner – both predominantly sources of nutrients with heterotrophic processes dominating over autotrophic actions and both were net denitrifyers during all surveys. This was, however, due to different sets of processes operating in the two estuaries, namely low nutrient concentrations resulting in microbial activity in the Kariega estuary, and riverine influx of nutrients and phytoplankton combined with a short residence time of the water in the Great Fish estuary. In the marine nearshore environment, higher nutrient concentrations were recorded adjacent to the Great Fish estuary than offshore of the Kariega estuary. This was due to a surface plume of less saline water leaving the Great Fish estuary, which acted as an ‘outweller’ of nutrients. Offshore of the Kariega estuary, on the other hand, the nutrient concentrations were characteristic of marine waters due to a lack of fresh water outflow from the estuary. Nutrient concentrations in the marine environment adjacent to the Kariega estuary were, at times, higher than those recorded within the estuary. This observation supports previous statements which suggest that the Kariega estuary is not an ‘outweller’ of dissolved nutrients and particulate material, but rather an extension of the marine environment.
- Full Text:
- Date Issued: 2006
- «
- ‹
- 1
- ›
- »