Development of graphene materials and phthalocyanines for application in dye-sensitized solar cells
- Authors: Chindeka, Francis
- Date: 2020
- Subjects: Dye-sensitized solar cells , Graphene , Phthalocyanines , Molecular orbitals , Impedance spectroscopy
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/166092 , vital:41328
- Description: Two sets of dye-sensitized solar cells (DSSCs) were fabricated. In the first set, dye-sensitized solar cells (DSSC) were fabricated by incorporating graphene materials as catalysts at the counter electrode. Platinum was also used as a catalyst for comparative purposes. Different phthalocyanines: hydroxyl indium tetracarboxyphenoxy phthalocyanine (1), chloro indium octacarboxy phthalocyanine (2) and dibenzoic acid silicon phthalocyanine (3) were used as dyes. Complex 3 gave the highest power conversion efficiency (η) of 3.19% when using nitrogen doped reduced graphene oxide nanosheets (NrGONS) as a catalyst at the counter electrode, and TiO2 containing rGONS at the anode. The value obtained is close to 3.8% obtained when using Pt catalyst instead of NrGONS at the cathode, thus confirming that NrGONS is a promising candidate to replace the more expensive Pt. The study also shows that placing rGONS on both the anode and cathode improves efficiency. In the second set, DSSCs were fabricated by using 2(3,5-biscarboxyphenoxy), 9(10), 16(17), 23(24)-tri(tertbutyl) phthalocyaninato Cu (4) and Zn (5) complexes as dyes on the ITO-TiO2 photoanodes containing reduced graphene oxide nanosheets (rGONS) or nitrogen-doped rGONS (NrGONS). The evaluation of the assembled DSSCs revealed that using ITO-TiO2-NrGONS-CuPc (4) photoanode had the highest fill factor (FF) and power conversion efficiency (ɳ) of 69 % and 4.36 % respectively. These results show that the asymmetrical phthalocyanine complexes (4) and (5) showed significant improvement on the performance of the DSSC compared to previous work on symmetrical carboxylated phthalocyanines with ɳ = 3.19%.
- Full Text:
- Date Issued: 2020
Effect of the nature of nanoparticles on the photophysicochemical properties and photodynamic antimicrobial chemotherapy of phthalocyanines
- Authors: Magadla, Aviwe
- Date: 2020
- Subjects: Nanoparticles , Phthalocyanines , Anti-infective agents -- Therapeutic use , Photochemotherapy , Photochemistry
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/123107 , vital:35406
- Description: In this work, the syntheses and characterisation of Zn monocaffeic acid tri–tert–butyl phthalocyanine (1), Zn monocarboxyphenoxy tri– tert–butylphenoxyl phthalocyanine (2), tetrakis phenoxy N,N-dimethyl-4-(methylimino) phthalocyanine indium (III) chloride (3) and tetrakis N,N-dimethyl-4-(methylimino) phthalocyanine indium (III) chloride (5) are presented. Complexes 3 and 5 were further quartenised with 1,3- propanesultone to form corresponding complexes (4) and (6), respectively. Complexes 1 and 2 were covalently linked to amino functionalised nanoparticles (NPs). Complexes 3, 4, 5 and 6 where linked to oleic acid/oleylamine capped (OLA/OLM) silver-iron dimers (Ag-Fe3O4 OLA/OLM) and silver-iron core shell (Ag@Fe3O4 OLA/OLM) NPs via interaction between the nanoparticles and the imino group on the phthalocyanines. The phthalocyanine-NP conjugates afforded an increase in triplet quantum yields with a corresponding decrease in fluorescence quantum yield as compared to the phthalocyanine complexes alone. Complexes 3, 4 and their conjugates were then used for photodynamic antimicrobial chemotherapy on E. coli. The zwitterionic photosensitiser 4 and its conjugates showed better efficiency for photodynamic antimicrobial chemotherapy compared to their neutral counterparts.
- Full Text:
- Date Issued: 2020
Metallophthalocyanines linked to metal nanoparticles and folic acid for use in photodynamic therapy of cancer and photoinactivation of bacterial microorganisms.
- Authors: Matlou, Gauta Gold
- Date: 2020
- Subjects: Cancer -- Photochemotherapy , Nanoparticles , Phthalocyanines , Anti-infective agents -- Therapeutic use , Photochemotherapy , Photochemistry
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/166540 , vital:41377
- Description: This thesis presents on the synthesis and characterization of novel asymmetric and symmetrical metallophthalocyanines (MPcs) substituted with carboxylic acid functional groups and centrally metallated with zinc and indium. The MPcs are further covalently linked to cysteine capped silver nanoparticles (cys-AgNPs), amino functionalized magnetic nanoparticles (AMNPs) and folic acid (FA) through an amide bond between the carboxylic group of MPcs and the amino group of FA, cys-AgNPs or AMNPs. The covalent linkage of MPcs to FA improved the water solubility of MPcs and allowed for singlet oxygen quantum yield determination in water. Asymmetric MPcs and their conjugates were found to have improved photochemical and photophysical properties compared to symmetrical MPcs and their conjugates. The heavy atom effect of AMNPs and AgNPs improved the triplet and singlet oxygen quantum yields of MPcs. MPcs and their conjugates (MPc-FA, MPc-AMNPs, MPc-AgNPs) were found to have lower in vitro dark cytotoxicity and higher photodynamic therapy (PDT) activity on MCF-7 breast cancer cells. The water soluble MPc-FA had better PDT activity when compared to MPc-AMNPs due to the active targeting of folic acid-folate binding on cancer cell surface. MPcs and MPc-AgNPs conjugates also showed excellent in vitro cytotoxicity on S. aureus under light irradiation compared to dark cytotoxicity. The photosensitizing properties of MPcs and their conjugates are demonstrated for the first time in this thesis, both on breast cancer cells (MCF-7) through photodynamic therapy and on microorganisms (S. aureus) through photodynamic antimicrobial chemotherapy.
- Full Text:
- Date Issued: 2020
Photocatalysis of 4-chloro and 4-nonylphenols using novel symmetric phthalocyanines and asymmetric porphyrin supported on polyacrylonitrite nanofibres
- Authors: Jones, Benjamin Martin
- Date: 2020
- Subjects: Nanoparticles , Phthalocyanines , Electrospinning , Porphyrins , Nanofibers , Photocatalysis , Photocatalysis -- Environmental aspects
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/164770 , vital:41163
- Description: This work explores the synthesis and characterisation of novel symmetrical phthalocyanines and novel asymmetric porphyrins that have been embedded or linked respectively,and electrospun into fibres for application in the photocatalysis of environmental pollutants. The phthalocyanines contain pyrrole moieties without hetero atom linkers to maintain a rigid structure. The porphyrin contains a carboxy moiety utilized to construct an amide bond between the complex and the polymer prior to the spinning process. The new compounds were characterized by elemental analyses, proton nuclear magnetic resonance (HNMR)Fourier-transform infrared spectroscopy (FTIR), MALDI-TOF and UV-vis spectroscopy. The general trends of fluorescence, triplet and singlet oxygen quantum yields are described as well as their appropriate lifetimes. The photocatalytic activity of phthalocyanine embedded fibres were compared against those that had been dyed. Unfortunately, during the degradation process, the dyed fibres leeched compound and the studies could not be continued. It was seen that the porphyrin fibres linked to the polymer showed the most efficient photocatalytic activity against 4-cholorphenol and 4-nonylphenol due to irradiation at lower wavelengths consequently having higher frequencies and transferring more energy.
- Full Text:
- Date Issued: 2020
Symmetry and asymmetry in electrocatalysis: enhancing the electrocatalytic activity of phthalocyanines through synergy with doped graphene quantum dots
- Authors: Nkhahle, Reitumetse Precious
- Date: 2020
- Subjects: Phthalocyanines , Quantum dots , Graphene
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/117585 , vital:34529
- Description: An exploration on the enhancement of the electrocatalytic activity of phthalocyanines (Pcs) through coupling with a series of graphene quantum dots (GQDs) is undertaken. The preliminary studies using symmetrical Pcs, a cobalt and an iron chloride tetra substituted diethylaminophenoxy Pc (complexes 1 and 2), for the electro-oxidation of nitrite revealed through the various sequential modifications that doped GQDs fare better than their pristine counterparts with respect to improving the electrocatalytic behaviour of Pcs, in particular, the nitrogen-doped GQDs (NGQDs). Following up on this, a series of asymmetric Pc complexes; 2,9,16-tris-(4-tert-butylphenoxy) mono carboxyphenoxy phthalocyanato cobalt (II) (3), 2,9,16-tris-(4-tert-butylphenoxy) mono aminophenoxy phthalocyanato cobalt (II) (4), 2,9,16-tris-(3-diethylamino)phenoxy) mono carboxyphenoxy phthalocyanato cobalt (II) (5) and 2,9,16-tris-(3-diethylamino)phenoxy) mono aminophenoxy phthalocyanato cobalt (II) (6) was prepared in which push-pull systems were compared to other asymmetric complexes that lack this effect towards the electrocatalytic sensing of hydrazine. All asymmetric complexes (3-6) were π-stacked to the NGQDs while those with an NH2 group (4 and 6), were also covalently linked to the NGQDs. These complexes and their corresponding conjugates were characterized accordingly and applied as electrocatalysts in the oxidation of hydrazine. The electrochemical studies revealed that π π stacking yields better responses (higher sensitivities and lower limits of detection) than covalent linking because there are less forces acting on the graphene network. Covalent linking introduces both tensile and compressive forces which in turn results in an increase in the ID/IG ratio and that is unfavourable for electrocatalysis. In comparing the electrodes composed of the π-stacked conjugates to those altered through sequential modifications, despite the conditions not being the same, it can be inferred that the magnitude of the electrostatic forces between the Pcs and the GQDs also plays a significant role in electrocatalysis. The π-stacked conjugates, owing to the manner in which they were prepared, have stronger electrostatic forces acting between the Pc and GQDs hence they were able to elicit a better electrochemical response than the sequentially modified electrodes. In addition to that, it appears that asymmetric Pcs are better electrocatalysts in comparison to the symmetric Pcs.
- Full Text:
- Date Issued: 2020
Synthesis, photophysicochemical properties and photodynamic therapy activities of indium and zinc phthalocyanines when incorporated into Pluronic polymer micelles
- Authors: Motloung, Banele Mike
- Date: 2020
- Subjects: Indium , Zinc , Phthalocyanines , Polymers , Photochemotherapy , Micelles
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/167529 , vital:41489
- Description: This thesis reports on the syntheses, photophysicochemical properties and photodynamic therapy activities of symmetrical metallophthalocyanines (MPcs) when alone or when incorporated into Pluronic polymer micelles. The Pcs contain either zinc or indium as central metals and have phenyldiazenylphenoxy, pyridine-2-yloxy and benzo[d]thiazol-2-ylthio as ring substituents. Spectroscopic and microscopic techniques were used to confirm the formation MPcs with micelles. The photophysics and photochemistry of the Pcs were assessed when alone and with micelles. All the studied Pcs showed good photophysicochemical behavior with relatively high triplet and singlet oxygen quantum yields corresponding to their low fluorescence quantum yields. The Pcs with indium in their central cavity exhibited higher triplet and singlet oxygen quantum yields in comparison to their zinc counterparts due to the heavy atom effect obtained from the former. The in vitro dark cytotoxicity and photodynamic therapy of the Pc complexes and conjugates against MCF7 cells was tested. All studied Pc complexes alone and with micelles showed minimum dark toxicity making them applicable for PDT. All complexes displayed good phototoxicity < 50% cell viability (except for complex 2 > 50% cell viability) at concentrations ≤100 μg/mL, however the conjugates showed < 45% cell viability at concentrations ≤ 100 μg/mL, probably due to the small micellar size and EPR effect. The findings from this work show the importance of incorporating photosensitizers such as phthalocyanines into Pluronic polymers micelles and making them water soluble and ultimately improving their photodynamic effect.
- Full Text:
- Date Issued: 2020
Effect of substituents on the photophysical properties and nonlinear optical properties of asymmetrical zinc(II) phthalocyanine when conjugated to semiconductor quantum dots
- Authors: Mgidlana, Sithi
- Date: 2019
- Subjects: Nonlinear optics , Quantum dots , Phthalocyanines , Zinc
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/97152 , vital:31404
- Description: Various characterization techniques have been used to characterize the synthesized asymmetrical zinc phthalocyanines (ZnPc) derivatives. Techniques include Ultraviolet-visible (UV-vis) spectrophotometry, matrix assisted laser desorption time of flight mass spectrometry (MALD-TOF MS), proton nuclear magnetic resonance (1H-NMR), elemental analysis and Fourier-transform infra-red spectroscopy (FT-IR). The complexes are covalently linked to core/shell and core/shell/shell semiconductor quantum dots (SQDs) via amide bond formation. Photophysical properties of complexes improved in the presence of semiconductor quantum dots (SQDs). SQDs contain cadmium/telluride (CdTe) as core, coated in the first shell with zinc selenide (ZnSe) or zinc sulfide (ZnS) and with zinc oxide (ZnO) in second shell. The photophysical properties of the phthalocyanine (Pc) complexes and their conjugates with SQDs are investigated in solution. Triplet quantum yields of complexes improved in the presence of semiconductor quantum dots. The optical limiting behaviour of the Pc complexes and conjugates are assessed using the open aperture Z–scan technique at laser excitation wavelength of 532 nm with 10 ns pulse. Pcs complexes showed good nonlinear optical response with higher nonlinear absorption coefficient. The conjugates afforded higher nonlinear absorption coefficient than Pc complexes alone.
- Full Text:
- Date Issued: 2019
Nonlinear optical responses of targeted phthalocyanines when conjugated with nanomaterials or fabricated into polymer thin films
- Authors: Nwaji, Njemuwa Njoku
- Date: 2019
- Subjects: Electrochemistry , Phthalocyanines , Nanoparticles , Bioconjugates , Thin films , Polymers , Nonlinear optics , Nonlinear optical spectroscopy , Nanostructured materials , Raman effect
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/71625 , vital:29926
- Description: A number of zinc, gallium and indium metallophthalocyanines (MPcs) with diverse substituents have been synthesized and characterized using various characterization tools such as proton nuclear magnetic resonance (1HNMR), matrix assisted laser desorption time of flight (MALDI-TOF) mass spectrometry, Fourier-transformed infra-red (FT-IR), Ultraviolet-visible (Uv-vis) spectrophotometry, magnetic circular dichroism and CHNS elemental analysis. The time dependent density functional theory was employed to probe the origin of spectroscopic information in these complexes. Complexes with gallium and indium as central metal showed higher triplet quantum yield compared to the zinc derivatives. Some of the MPcs were covalently linked to nanomaterials such as CdTe, CdTeSe, CdTeSe/ZnO, graphene quantum dots (GQDs) as well as metallic gold (AuNPs) and silver (AgNPs) nanoparticles. Others were either surface assembled onto AuNPs and AgNPs or embedded into polystyrene as polymer source. The phthalocyanine-nanomaterial composites (Pc-NMCs) were characterized with FT-IR, UV-visible spectrophotometry, transmission electron microscopy (TEM), dynamic light scattering (DLS), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and X-ray diffractometry (XRD). The thickness of the thin films was determined by utilization of the knife edge attachment of the A Bruker D8 Discover X-ray diffraction. The optical limiting properties (using the open-aperture Z-scan technique) of the MPcs and the Pc-NMCs were investigated. The investigated MPcs complexes generally showed good optical limiting properties. The nonlinear optical response of the MPcs were improved in the presence of nanomaterials such as the semiconductor quantum dots (SQDs), graphene quantum dots (GQDs) as well as metallic AuNPs and AgNPs with MPc-QDs showing the best optical limiting behavior. The optical limiting properties of the MPcs were greatly enhanced in the presence of polymer thin films.
- Full Text:
- Date Issued: 2019
Photocatalytic treatment of organic and inorganic water pollutants using zinc phthalocyanine-cobalt ferrite magnetic nanoparticle conjugates
- Authors: Mapukata, Sivuyisiwe
- Date: 2019
- Subjects: Phthalocyanines , Cobalt ferrite , Zinc , Nanoparticles
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/67603 , vital:29119
- Description: This work explores the synthesis and photophysicochemical properties of zinc phthalocyanines when conjugated to cobalt ferrite magnetic nanoparticles. Phthalocyanines with amine and carboxylic acid functional groups were synthesised so as to covalently link them via amide bonds to cobalt ferrite magnetic nanoparticles with carboxylic acid and amine groups, respectively. Spectroscopic and microscopic studies confirmed the formation and purity of the phthalocyanine-cobalt ferrite magnetic nanoparticle conjugates which exhibited enhanced triplet and singlet quantum yields compared to the phthalocyanines alone. The studies showed that the presence of cobalt ferrite nanoparticles significantly lowered fluorescence quantum yields and lifetimes. The conjugates not only showed much higher singlet oxygen quantum yields compared to the phthalocyanines alone but were also attractive because of their magnetic regeneration and hence reusability properties, making them appealing for photocatalytic applications. The photocatalytic ability of some of the phthalocyanines and their conjugates were then tested based on their photooxidation and photoreduction abilities on Methyl Orange and hexavalent chromium, respectively. For catalyst support, some of the zinc phthalocyanines, cobalt ferrite magnetic nanoparticles and their respective conjugates were successfully incorporated into electrospun polystyrene and polyamide-6 fibers. Spectral characteristics of the functionalized electrospun fibers confirmed the incorporation of the photocatalysts and indicated that the phthalocyanines and their respective conjuagates remained intact with their integrity maintained within the polymeric fiber matrices. The photochemical properties of the complexes were equally maintained within the electrospun fibers hence they were applied in the photooxidation of azo dyes using Orange G and Methyl Orange as model organic compounds.
- Full Text:
- Date Issued: 2019
Photophysical properties and photodynamic therapy activities of symmetrical and asymmetrical porphyrins embedded into Pluronic polymer micelles and nonlinear optical properties of an asymmetrical phthalocyanine
- Authors: Managa, Muthumuni Elizabeth
- Date: 2019
- Subjects: Porphyrins , Phthalocyanines
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/67625 , vital:29122
- Description: This work reports on the synthesis of symmetrical and asymmetrical novel porphyrins that have been incorporated into Pluronic polymers, as well as the synthesis of asymmetrical phthalocyanine. The new compounds were characterized by elemental analysis, Fourier-transform infrared spectroscopy (FT-IR), proton nuclear magnetic resonance (1H NMR), mass spectrometry and UV–Visible spectroscopy. The porphyrins that are synthesised were not water soluble but upon incorporating into Pluronic polymer micelles, they became water soluble. The polymer was also modified and linked to folic acid, to enhance selectivity for photodynamic therapy application, where MCF7 breast cancer cells were used. The singlet oxygen quantum yields were lower for the metal free porphyrins as compared to metalled ones due to the heavy atom effect of ClGa, Zn and Cl2Si in the latter which encourages intersystem crossing to the triplet state. Singlet oxygen quantum yields for water soluble derivatives increased upon being encapsulated into the micelles for all. The Stern-Volmer constant (Ksv), binding constant (Kb) and number of binding sites (n) were investigated in order to understand the interaction between the polymer micelles and the porphyrins, and it was showed that the central metals play a role in the manner which the porphyrin interacts with the micelles. The dark toxicity and photodynamic activity of the novel porphyrins upon encapsulating to Pluronic polymer micelles is also reported. There was minimal dark toxicity for all complexes with > 90% cell survival. The photodynamic activity of water insoluble porphyrins improved when encapsulated into the micelles. Novel asymmetrical phthalocyanines were also synthesised for nonlinear optics (NLO) studies in solution and thin films.
- Full Text:
- Date Issued: 2019
Photophysicochemical properties and surface-enhanced Raman scattering of phthalocyanine-nanoparticle conjugates
- Authors: Nwahara, Nnamdi
- Date: 2019
- Subjects: Boron compounds , Electrochemistry , Phthalocyanines , Nanoparticles , Bioconjugates , Raman effect
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/71647 , vital:29928
- Description: This work presents the synthesis, photophysical and photochemical characterization of a series of metallophthalocyanines (MPcs) and boron dipyrromethene (BODIPY) and their conjugates with either gold or silver nanoparticles (AuNPs or AgNPs) or graphene quantum dots (GQDs). The rich π-electron systems of GQDs and MPcs employed in this work enabled the coordination of MPcs to GQDs (either as pristine or modified) via the non-covalent (π-π stacking) method. GQDs, AuNPs and AgNPs were also functionalized with L-glutathione (GSH) in order to assist coupling to the Pcs or BODIPY dye. Spectroscopic and microscopic studies confirmed the formation of the respective nanoparticles (NPs) as well as the conjugates which exhibited enhanced photophysicochemical properties in comparison to the phthalocyanines (Pcs) or BODIPY alone. This work also shows that the incorporation of folic acid (FA) into Pcs-NPs composites leads to further enhancements in the singlet oxygen generation capabilities of the resulting conjugates, and so experimentally demonstrates for the first time, a synergy between FA and the respective nanoparticles (GQDs, AuNPs and AgNPs) in affecting the photophysical properties of Pcs complexes. GQDs and Pcs/GQDs hybrids were also herein decorated with AuNPs – metallic nanostructures that employ localized surface plasmon resonances to capture or radiate electromagnetic waves at optical frequencies. These nanostructures herein reported, have been shown to possess enhanced light-matter properties, enabling unique surface-enhanced Raman scattering (SERS) behaviours, with unprecedented enhancement factors of up to 30-fold. This work therefore, reports on the fabrication of Pc/GQDs/AuNPs hybrids and experimentally demonstrates their incredible potential as novel Raman-active PDT agents.
- Full Text:
- Date Issued: 2019
Physicochemical properties and photodynamic therapy activities of indium and zinc phthalocyanine-nanoparticle conjugates
- Authors: Dube, Edith
- Date: 2019
- Subjects: Indium , Zinc , Phthalocyanines , Breast -- Cancer -- Photochemotherapy , Nanoparticles
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/76506 , vital:30589
- Description: The syntheses and characterization of symmetric and asymmetric Pcs functionalized at the peripheral position are reported. The Pcs contain either zinc or indium as central metals and have carboxyphenoxy, phenoxy propanoic acid, benzothiazole phenoxy, thiophine ethoxy or di-O-isopropylidene-α-D-glucopyranose as ring substituents. The Pcs were linked to NPs via an amide bond or through self-assembly. The photophysics and photochemistry of the Pcs were assessed when alone and with conjugates. All the studied Pcs showed good photophysicochemical behaviour with relatively high triplet and singlet oxygen quantum yields corresponding to their low fluorescence quantum yield. The Pcs with indium in their central cavity exhibited higher triplet and singlet oxygen quantum yields in comparison to their zinc counterparts due to the heavy–atom effect obtained from the former. Asymmetrical Pcs displayed higher triplet and singlet oxygen quantum yields than their symmetrical counterparts. The triplet quantum yield, generally increased on linkage to nanoparticles (NPs) due to the heavy–atom effect of gold and silver in NPs. The conjugates to gold nanospheres yielded higher triplet and singlet quantum yields than their gold nanotriangles counterparts due to the higher loading by the former probably encouraged by their relatively small particle size. The in vitro dark cytotoxicity and photodynamic therapy of selected Pc complexes and conjugates against MCF-7 cells was tested. All studied Pc complexes and conjugates showed minimum dark toxicity making them applicable for PDT. All complexes displayed poor phototoxicity with >50Îll viability at concentrations≤ 160μg/mL, however the conjugates showed<50% cell viabilityatconcentrations≤ 160μg/mLprobably due to the enhanced singlet oxygen quantum yield. The findings from this work show the importance of linking photosensitises such as phthalocyanines to metal nanoparticles for the enhancement ofsinglet oxygen quantum yield and ultimately the photodynamic effect.
- Full Text:
- Date Issued: 2019
Substituent effects on the electrocatalytic activity of cobalt phthalocyanine in the presence of graphene quantum dots
- Authors: Centane, Sixolile Sibongiseni
- Date: 2019
- Subjects: Phthalocyanines , Quantum dots , Electrocatalysis , Electrochemistry
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/67614 , vital:29121
- Description: The electrocatalytic activity of metallophthalocyanines derivatives is explored. Cobalt monocarboxyphenoxy phthalocyanine (1), cobalt tetracarboxyphenoxy phthalocyanine (2), cobalt tetraaminophenoxy phthalocyanine (3) and cobalt tris-(tert-butylphenoxy) monocarboxyphenoxy phthalocyanine (4) are the phthalocyanines employed in this work. The metallophthalocyanines were employed alone as well as in the presence of the carbon based graphene quantum dots. The electrocatalytic behaviour of functionalized GQDs is also explored herein. The catalytic processes studies were conducted on a glassy carbon electrode surface. Modification of the electrode was achieved by the adsorption method. The materials were adsorbed either alone, as premixed/covalently linked GQDs/Pc conjugates or sequentially. Sequentially adsorbed electrodes involved the phthalocyanines on top or beneath GQDs. Sequentially modified electrodes where the phthalocyanine had higher currents and low detection limits than when the phthalocyanine is underneath. Premixed conjugates showed better activity than the covalently formed conjugates. The nanomaterials synthesized and used in this work were characterized using transmission electron microscopy, UV-Vis spectroscopy, dynamic light scattering, Raman spectroscopy, X-ray diffraction, Atomic Force Microscopy and X-ray photoelectron spectroscopy. The modified electrodes were characterized using cyclic voltammetry and scanning electrochemical spectroscopy. The electrocatalytic activity of the modified electrodes towards the oxidation of hydrazine was evaluated using cyclic voltammetry and chronoamperometry. Superior catalytic activity was observed for the conjugates compared to that of the individual conjugates.
- Full Text:
- Date Issued: 2019
Syntheses and photophysico-chemical properties of phthalocyanines in the presence of silica nanoparticles
- Authors: Peteni, Siwaphiwe
- Date: 2019
- Subjects: Phthalocyanines , Silica , Nanoparticles , Bioconjugates
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/67592 , vital:29118
- Description: This thesis reports on the syntheses and characterizationof symmetrical (charged and neutral), asymmetrical (neutral) metallophthalocyanines (MPcs) and subphthalocyanines (SubPcs). The charged and neutral Pcs were physically doped onto silica nanoparticles (SiNPs). The asymmetrical MPc was also chemically linked to SiNPs. Spectroscopic and microscopic techniques were used to confirm the formation of SiNPs-MPc conjugates. The photophysics and photochemistry of the MPcs were assessed when alone and in conjugates (with SiNPs). The studies showed no significant changes in fluorescence quantum yields (ϕF) and fluorescence lifetimes (ϕF) of MPcs following doping except for 2-SiNPs (2 = Zn tetraaminophenoxyphthalocyanines) and 6-SiNPs (doped) (6 = Zn tris[(4-(pyridine-4-ylthio)2-thio-4-methylthiazol-5yl) acetic acid phthalocyanine) where there was a decrease in the ϕF value. Also for 1-SiNPs (1 = unsubstituted ZnPc) there was an elongation in τF which could be due to the protection offered by SiNPs. Both charged/neutral MPcs displayed high triplet quantum yields (ϕT) and singlet quantum yields (ϕΔ) following doping except for 2-SiNPs where there was a decrease in the latter. For 1-SiNPs there was an increase in ϕT but a decrease inϕΔ .There wasa decrease in ϕT and an increase in ϕΔfor4-SiNPs (4 = Zn tetrasulfophenoxyphthalocyanine), the decrease in ϕT could be due to the orientation of theMPc in SiNPs. An increase in both ϕT and ϕΔ for 6-SiNPs (linked) compared to 6-SiNPs (doped) was observed. Complex 5 (5 = Zn tetra-kis-(dodecylmercapto) phthalocyanine) showed a low ϕΔ value.
- Full Text:
- Date Issued: 2019
Synthesis of indium phthalocyanines for photodynamic antimicrobial chemotherapy and photo-oxidation of pollutants
- Authors: Sindelo, Azole
- Date: 2019
- Subjects: Phthalocyanines , Azo dyes , Indium compounds , Photochemotherapy , Nanoparticles , Photodegradation , Pollutants , Water -- Purification
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/67581 , vital:29116
- Description: Indium (III) octacarboxyl phthalocyanine (ClInOCPc) alone and when conjugated to magnetic nanoparticles (MNP-ClInOCPc), 2(3),9(10),16(17),23(24)-octapyridylsulfanyl phthalocyaninato chloroindium (III) (ClInOPyPc) and its quaternized derivative 2(3),9(10),16(17),23(24)-octamethylpyridylsulfanyl phthalocyaninato chloroindium (III) (ClInOMePyPc) were synthesized. All Pcs were tested for both photodynamic antimicrobial chemotherapy (PACT) of an unknown water sample and photo-degradation of methyl red (MR). The singlet quantum yield (ΦΔ) for the ClInOCPc and MNP-ClInOCPc in PAN polymer fibers were 0.36 and 0.20 respectively using ADMA as a quencher in water. The photo-inactivation of bacteria in a water sample with unknown microbes was tested, with the MNP-ClInOCPc inactivating 90.6 % of the microbes and the ClInOCPc with 84.8 %. When embedded to the polymer, there was 48% bacterial clearance for ClInOCPc and 64% clearance for the MNP-ClInOCPc. The rate of degradation of MR increased with decrease of the MR concentration, with the MNP-ClInOCPc having the fastest rate. For ClInOPyPc and ClInOMePyPc, the singlet quantum yields were 0.46 and 0.33 in dimethylformamide (DMF), respectively. The PACT activity of ClInOMePyPc (containing 8 positive charges) was compared to those of 9(10),16(17),23(24)-tri-N-methyl-4-pyridylsulfanyl-2(3)-(4-aminophenoxy) phthalocyaninato chloro indium (III) triiodide (1) (containing 3 positive charges) and 2-[4-(N-methylpyridyloxy) phthalocyaninato] chloroindium (III) iodide (2) (containing 4 positive charges). When comparing ClInOMePyPc, 1 and 2, the largest log reduction for E. coli were obtained for complex 2 containing four positive charges hence showing it is not always the charge that determines the PACT activity, but the bridging atom in the phthalocyanine plays a role.
- Full Text:
- Date Issued: 2019
Characterisation of surfaces modified with phthalocyanines through click chemistry for applications in electrochemical sensing
- Authors: O'Donoghue, Charles St John Nqwabuko
- Date: 2018
- Subjects: Electrodes, Carbon , Phthalocyanines , X-ray photoelectron spectroscopy , Electrochemistry , Electrochemical sensors , Hydrazine , Click chemistry
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/58046 , vital:27038
- Description: One form of surface modification was primarily investigated in this work on glassy carbon electrodes. The form of modification is comprised of a series of steps in which electrografting is first applied to the glassy carbon surface, which is then followed up with click chemistry to ultimately immobilise a phthalocyanine onto the surface. The modified glassy carbon electrodes and surfaces were characterised with a combination of scanning electrochemical microscopy, X-ray photoelectron spectroscopy and various electrochemical methods. In this work, three alkyne substituted phthalocyanines were used. Two novel phthalocyanines, with nickel and cobalt metal centres, were studied alongside a manganese phthalocyanine reported in literature. Each of the three phthalocyanines was modified at the peripheral position with a 1-hexyne group, via a glycosidic bond, yielding the terminal alkyne groups that were used for subsequent click reactions. In situ diazotisation was used to graft 4-azidoaniline groups to the surface of the glassy carbon electrode. The azide bearing 4- azidoaniline groups were thus used to anchor the tetra substituted phthalocyanines to the surface of the electrodes. This method yielded successful modification of the electrodes and lead to their application in sensing studies. The modified electrodes were primarily used to catalyse the common agricultural oxidising agent hydrazine.
- Full Text:
- Date Issued: 2018
Graphene quantum dots and their metallophthalocyanines nanoconjugates as novel photoluminescent nanosensors
- Authors: Achadu, Ojodomo John
- Date: 2018
- Subjects: Quantum dots , Graphene , Phthalocyanines , Nanoconjugates , Novel photoluminescent nanosensors , Metallophthalocyanines
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/60719 , vital:27821
- Description: The fabrication and application of graphene quantum dots (GQDs)-based photoluminescent probes for the detection of analytes is presented. GQDs were functionalized with complexes such as metallophthalocyanines (MPcs), metal nanoparticles (Au@Ag NPs), 2,2,6,6-tetramethyl(piperidin-1-yl)oxyl (TEMPO), maleimide and thymine for the sensing of target analytes such as ascorbic acid (AA), biothiols (cysteine, homocysteine and glutathione) and mercury ion (Hg²+). The design strategy and approach was based on the quenching of the fluorescence of the GQDs upon functionalization with the above-mentioned complexes, which could be restored in the presence of the target analytes (due to their specific interaction affinity with the complexes). For the detection of AA, GQDs were covalently and/or non-covalently conjugated to TEMPO-bearing complexes to form GQDs-4A-TEMPO and GQDs-TEMPO-MPc systems with nanomolar limits of detection. For the detection of biothiols, Au@Ag NPs and maleimide-bearing complexes (MPc), which have specific affinity to interact with biothiols, were deployed. Hg²+ detection involved the use of GQDs and/or MPcs with thiol and thymine groups, respectively. In addition, a smart sensing platform was designed for the dual detection of biothiols and Hg²+ using supramolecular hybrid of polyethyleneimine functionalized-GQDs and MPc-Au@Ag conjugate. The probe could detect, in a sequential manner, Hg²+ and biothiols with high sensitivity. Results obtained from the LODs of the probes showed that GQDs sensing performances could be enhanced in the presence of MPcs. The probes designed in this work were successfully deployed in the assays of the target analytes in real samples and the recoveries obtained confirmed the analytical applicability of the probes.
- Full Text:
- Date Issued: 2018
Nonlinear optical properties of Sn(IV) phthalocyanines: experimental and theoretical approach
- Authors: Louzada, Marcel Severiano
- Date: 2017
- Subjects: Phthalocyanines , Nonlinear optics
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/57852 , vital:26996
- Description: This work presents the nonlinear properties of six Sn(IV) Phthalocyanines. Three of the phthalocyanines are linked by an alkylthiol substituent and the rest are linked with a phenoxy substituent. For all six compounds non-linear optic analysis was carried out in four solvents: chloroform, toluene, dichloromethane, and tetrahydrofuran, and their differences were recorded. Calculation of the linear, singlet excited, triplet excited and two photon absorption cross-sections were also carried out and the results compared. To form a comparison the first order hyperpolarizabilities, DFT calculations were also performed and the results compared to see if the behaviour between the two properties can be predicted using DFT.
- Full Text:
- Date Issued: 2017
Nonlinear optical responses of phthalocyanines in the presence of nanomaterials or when embedded in polymeric materials
- Authors: Bankole, Owolabi Mutolib
- Date: 2017
- Subjects: Phthalocyanines , Phthalocyanines -- Optical properties , Alkynes , Triazoles , Nonlinear optics , Photochemistry , Complex compounds , Amines , Mercaptopyridine
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/45794 , vital:25548
- Description: This work describes the synthesis, photophysical and nonlinear optical characterizations of alkynyl Pcs (1, 2, 3, 8 and 9), 1,2,3-triazole ZnPc (4), mercaptopyridine Pcs (5, 6 and 7) and amino Pcs (10 and 11). Complexes 1, 2, 4, 7, 8, 9 and 11 were newly synthesized and characterized using techniques including 1H-NMR, MALDI-TOF, UV-visible spectrophotometry, FTIR and elemental analysis. The results of the characterizations were in good agreement with their molecular structures, and confirmed the purity of the new molecules. Complex 10 was covalently linked to pristine graphene (GQDs), nitrogen- doped (NGQDs), and sulfur-nitrogen co-doped (SNGQDs) graphene quantum dots; gold nanoparticles (AuNPs); poly(acrylic acid) (PAA); Fe3O4@Ag core-shell and Fe3O4- Ag hybrid nanoparticles via covalent bonding. Complex 11 was linked to Agx Auy alloy nanoparticles via NH2-Au and/or Au-S bonding, 2 and 3 were linked to gold nanoparticles (AuNPs) via clicked reactions. Evidence of successful conjugation of 2, 3, 10 and 11 to nanomaterials was revealed within the UV-vis, EDS, TEM, XRD and XPS spectra. Optical limiting (OL) responses of the samples were evaluated using open aperture Z-scan technique at 532 nm and 10 ns radiation in solution or when embedded in polymer mixtures. The analyses of the Z-scan data for the studied samples did fit to a two-photon absorption mechanism (2PA), but the Pcs and Pc-nanomaterial or polymer composites also possess the multi-photon absorption mechanisms aided by the triplet-triplet population to have reverse saturable absorption (RSA) occur. Phthalocyanines doped in polymer matrices showed larger nonlinear absorption coefficients (ßeff), third-order susceptibility (Im [x(3)]) and second-order hyperpolarizability (y), with an accompanying low intensity threshold (Ium) than in solution. Aggregation in DMSO negatively affected NLO behaviour of Pcs (8 as a case study) at low laser power, and improved at relatively higher laser power. Heavy atom-substituted Pcs (6) enhanced NLO and OL properties than lighter atoms such as 5 and 7. Direct relationship between enhanced photophysical properties and nonlinear effects favoured by excited triplet absorption of the 2, 3, 10 and 11 in presence of nanomaterials was established. Major factor responsible for the enhanced nonlinearities of 10 in the presence of NGQDs and SNGQDs were fully described and attributed to the surface defects caused by the presence of heteroatoms such as nitrogen and sulfur. The studies showed that phthalocyanines-nanomaterial composites were useful in applications such as optical switching, pulse compressor and laser pulse narrowing.
- Full Text:
- Date Issued: 2017
Tetra 4-(propargyloxy)phenoxy phthalocyanines: synthesis, spectroscopic, nonlinear optical and electrocatalytic properties
- Authors: Mwanza, Daniel
- Date: 2017
- Subjects: Phthalocyanines , Nonlinear optics , Electrocatalysis , Spectrum analysis , Thermogravimetry , Phthalocyanines Spectra
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10962/65144 , vital:28695
- Description: This study presents the synthesis, spectroscopic, photophysical and theoretical characterisation of metal-free (H2TPrOPhOPc), cobalt (CoTPrOPhOPc) and manganese (MnTPrOPhOPc) tetra 4-(4-propargyloxy) phenoxy phthalocyanines. Thermal analysis using thermogravimetric analysis (TGA) confirmed the excellent thermal stability of synthesized tetra 4-(4- propargyloxy) phenoxy phthalocyanines. The metal complexes, CoTPrOPhOPc and MnTPrOPhOPc, exhibited better thermal stability when compared to H2TPrOPhOPc. The residual percentage weight remaining was approximately 70% for CoTPrOPhOPc and MnTPrOPhOPc and 45% for H2TPrOPhOPc after 600°C, clearly confirming the stability of the metal complexes. The MTPrOPhOPcs (where M = H2, Co and Mn) complexes exhibited excellent nonlinear optical properties with strong reverse saturable absorption (RSA), especially when 560 nm excitation laser was used. Their nonlinear optical properties followed this trend: H2TPrOPhOPc > CoTPrOPhOPc > MnTPrOPhOPc. According to the trend observed, the H2TPrOPhOPc was an excellent nonlinear optical limiter when compared to the CoTPrOPhOPc and MnTPrOPhOPc. All the investigated complexes exhibited optical limiting properties comparable to the phthalocyanine complexes reported in the literature. The MTPrOPhOPc complexes were further studied for their electrocatalytic and electroanalytical properties towards the detection of hydrogen peroxide. For the electrocatalytic studies, the synthesized complexes were immobilized onto gold electrode surfaces pre-functionalized with phenylazide (Au-PAz) monolayer. Copper (I) catalyzed alkynyl-azide cycloaddition reaction was used to covalently immobilize the MTPrOPhOPcs onto the gold electrode surfaces to form Au-PAz-MTPrOPhOPc. The MTPrOPhOPcs modified gold surfaces (Au-PAz-MTPrOPhOPc) exhibited good reproducibility and stability in various electrolyte conditions. Electrochemical and surface characterisation of the functionalised gold electrode surfaces confirmed the presence of the MTPrOPhOPcs and their electroanalysis was excellent towards electrocatalytic reduction of H2O2, with the limit of detection (LoD) and limit of quantification (LoQ) in the ^M range. The electrocatalytic reduction peaks for H2O2 were observed at -0.37 V for Au-PAz-MnTPrOPhOPc and -0.31 V for Au-PAz-CoTPrOPhOPc when Ag|AgCl pseudo-reference electrode was used. The Au-PAz-MnTPrOPhOPc and Au- PAz-CoTPrOPhOPc gold electrode surfaces showed good sensitivity and reproducibility towards the electrocatalytic reduction of hydrogen peroxide in pH 7.4 phosphate buffer solution. , Thesis (MSc) -- Faculty of Science, Chemistry, 2017
- Full Text:
- Date Issued: 2017