Single-end reflectometric measurements of polarization-mode dispersion in single-mode optical fibres
- Authors: Fosuhene, Samuel Kofi
- Date: 2013
- Subjects: Fiber optics , Polarization (Light) , Optical measurements
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10948/6280 , vital:21069
- Description: In this thesis two novel single-end methods are applied to measure and characterize polarization mode dispersion in single mode optical fibres. Polarization mode dispersion (PMD) is an important factor negatively affecting the successful implementation of high speed long haul optical fibre networks operating at bit rates of 10Gb/s and above. PMD measurements are thus important for quality control during manufacturing and cabling processes. It is also useful for network operators planning to upgrade bitrates in existing networks to 10Gb/s and beyond. In an optical fibre link, sections with particularly high PMD may act to increase the entire PMD of the link. Identifying and replacing such sections can greatly reduce the PMD of the link. PMD measurements can be forward or single-end. In forward measurements, both ends of the fibre are used for input and detection. In single-end configuration, only one end of the fibre is used. For this reason, single-end measurements are more practical for the field where fibre ends are situated several kilometres apart. Single-end techniques can be implemented with a continuous wave for non-local PMD measurements (by Fresnel reflection). If a pulsed wave is used, local measurements can be achieved (by total power due to Rayleigh scattering). Two single-end schemes, one based on Fresnel reflection and the other due to Rayleigh scattering have been applied to measure non-local and local PMD of standard single mode optical fibres. For the non-local PMD measurements, the general interferometric technique (GINTY) was modified to operate in a round-trip configuration. In this configuration, the fibre was treated as a concatenation of two identical fibre segments. Three different sets of fibres were investigated, each set representing a particular mode coupling regime. For polarization maintaining fibres, (PMFs), with no mode coupling, a factor of two was found between forward and single-end measurements. For long single mode fibres in the long length regime, the factor was 1.4. For a combination of PMF and single mode fibres, a factor of 1.6 was obtained. The method which is accurate, repeatable, low cost and robust is very suitable for field applications. The second method is the polarization optical time domain reflectometric (P-OTDR) technique. This technique performs local birefringence measurements by measuring the evolution of the states of polarization (SOP). The birefringence information from such measurements was extracted and analysed to characterise four different fibres. Beat lengths and correlation lengths extracted from the P-OTDR were used to calculate the differential group delay (DGD) of the fibres. Next an expression for the root-mean-square differential group delay was derived and applied to the birefringence measurements to calculate the DGDs at a single wavelength. This method which operates at a single wavelength has a huge advantage. Firstly it is able to measure completely all the fibre characteristic parameters. Secondly it can measure mean DGD, root mean square DGD and instantaneous DGD. A plot of instantaneous DGD vs. length enables one to identify and eliminate sections with particularly high DGD. Finally since the P-OTDR system operates with a single wavelength, real time monitoring of PMD is possible via multiplexing. The results obtained are repeatable, accurate and are in good agreement with the standard Jones Matrix Eigenanalysis (JME) technique.
- Full Text:
- Date Issued: 2013
Effects of polarization in a distributed raman fibre amplifier
- Authors: Muguro, Kennedy Mwaura
- Date: 2011
- Subjects: Fiber optics , Polarization (Light) , Optical communications , Optical amplifiers , Raman effect
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:10544 , http://hdl.handle.net/10948/d1014621
- Description: The need to exploit the large fibre bandwidth and increase the reach has seen the application of the Raman fibre amplifier (RFA) become indispensable in modern light wave systems. The success and resilience of RFAs in optical communication is deeply rooted in their unique optical properties and new technologies which have allowed the amplifier to come of age. However, the full potential of RFAs in optical communication and other applications are yet to be realized. More so are its polarization properties which still remain largely unexploited and have not been fully understood. In this work, fundamental issues regarding distributed RFA have been investigated with the aim of acquiring a better understanding of the amplifier polarization characteristics which have potential applications. In particular the effects of polarization mode dispersion (PMD) and polarization dependent loss (PDL) have been demonstrated both by simulation and experiment. The possibility of Raman polarization pulling in single mode fibres (SMFs) has also been addressed. Polarization sensitivity of RFA has been known for a long time but the clear manifestation of it has become evident in the advent of modern low PMD fibre. Unlike EDFAs which make use of special doped fibre, RFAs require no special fibre for operation. Besides, RFA uses a very long length of fibre and as such the fibre polarization characteristics come into play during amplification. In the demonstrations presented in this thesis a fibre of PMD coefficient < 0.05 pskm-1/2 was regarded as low PMD fibre while one having coefficient ≥ 0.05 pskm-1/2 was categorized to have high PMD unless otherwise stated. Several experiments were performed to evaluate the RFA gain characteristics with respect to fibre PMD and the system performance in the presence of noise emanating from amplified spontaneous emission (ASE). Analysis of Raman gain statistics was done for fibres of low and high PMD coefficients. The statistics of PDG and on-off gain were eventually used to demonstrate the extraction of PMD coefficients of fibres between 0.01- 0.1 pskm-1/2 using a forward pumping configuration. It was found that, at increasing pump power a linear relationship exists between forward and backward signal gain on a dB scale. The interaction of PDL and Raman PDG in the presence of PMD were observed at very fundamental level. It was found the presence of PDL serves to reduce the available on-off gain. It was also established that the presence of PMD mediates the interaction between PDG/PDL. When PMD is high it reduces PDG but the presence of PDL introduces a wavelength dependent gain tilting for WDM channels. Further analysis revealed that signal polarization is influenced by the pump SOP due to the pulling effect which is present even at moderate pump power.
- Full Text:
- Date Issued: 2011
Compensation for polarization mode dispersion and nonlinear birefringence in a multichannel optical fibre system
- Authors: Waswa, David Wafula
- Date: 2009
- Subjects: Fiber optics , Nonlinear optics , Polarization (Light)
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:10375 , http://hdl.handle.net/10948/885 , Fiber optics , Nonlinear optics , Polarization (Light)
- Description: Polarization mode dispersion (PMD) is stochastic in nature and continues evolving in an unpredictable manner according to the changing environment. Nonlinear birefringence in multichannel systems alters the polarization states of the bits, so that they vary from one bit to the next in a way that is difficult to predict. These are the two major signal-impairment effects that are inherent in optical fibre transmission links which can seriously degrade network performance. It is therefore extremely challenging to compensate for both linear and nonlinear birefringence in multichannel systems. The purpose of this thesis is to investigate the interaction between PMD and nonlinear induced birefringence in a fibre with consideration of mode coupling. A sound knowledge of this interaction is necessary in designing a linear and nonlinear polarization mode dispersion compensator for WDM systems, as was successfully carried out in this study. The investigation shows that the effect of nonlinear birefringence alone depolarizes the signal, while in high PMD links where polarization mode coupling is high, the nonlinear birefringence effect couples with second-order PMD such that it may reduce the penalty and improve the signal DOP. Further investigation shows that when nonlinear birefringence becomes significant, asymmetry arises between the two principal axes of the fibre, such that it is only one axis which experiences the effect of nonlinear birefringence. It is found out that along this vii axis, there exists a critical point in pump power where the nonlinear birefringence cancels PMD in the link and improves the signal. An adaptive compensator to cancel PMD and nonlinear birefringence was designed based on feedforward DOP-monitoring signal. The compensator was tested both at laboratory level and on the Telkom buried fibre link and found to be functioning as intended. It was able to adaptively track and compensate PMD in the link in less than a second. The compensator was able to cancel PMD in the link up to a maximum of 30 ps. The compensator improved the DOP of the worst signal by more than 100 percent.
- Full Text:
- Date Issued: 2009
Polarization mode dispersion emulation and the impact of high first-order PMD segments in optical telecommunication systems
- Authors: Musara, Vitalis
- Date: 2009
- Subjects: Optical communications , Fiber optics , Polarization (Light)
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:10519 , http://hdl.handle.net/10948/1138 , Optical communications , Fiber optics , Polarization (Light)
- Description: In this study, focus is centred on the measurement and emulation of first-order (FO-) and second-order (SO-) polarization mode dispersion (PMD). PMD has deleterious effects on the performance of high speed optical transmission network systems from 10 Gb/s and above. The first step was characterising deployed fibres for PMD and monitoring the state of polarization (SOP) light experiences as it propagates through the fibre. The PMD and SOP changes in deployed fibres were stochastic due to varying intrinsic and extrinsic perturbation changes. To fully understand the PMD phenomenon in terms of measurement accuracy, its complex behaviour, its implications, mitigation and compensation, PMD emulation is crucial. This thesis presents emulator designs which fall into different emulator categories. The key to these designs were the PMD equations and background on the PMD phenomenon. The cross product from the concatenation equation was applied in order to determine the coupling angle β (between 0o and 180o) that results in the SO-PMD of the emulator designs to be either adjustable or fixed. The digital delay line (DDL) or single polarization maintaining fibre (PMF) section was used to give a certain amount of FO-PMD but negligible SO-PMD. PMF sections (birefringent sections) were concatenated together to ensure FO- and SO-PMD coexist, emulating deployed fibres. FO- and SO-PMD can be controlled by altering mode coupling (coupling angles) and birefringence distribution. Emulators with PMD statistics approaching the theoretical distributions had high random coupling and several numbers of randomly distributed PMF sections. In addition, the lengths of their PMF sections lie within 20% standard deviation of the mean emulator length. Those emulators with PMD statistics that did not approach the theoretical distributions had limited numbers of randomly distributed PMF sections and mode coupling. Results also show that even when an emulator has high random mode coupling and several numbers of randomly distributed PMFs, its PMD statistics deviates away from expected theoretical distributions in the presence of polarization dependent loss (PDL). The emulators showed that the background autocorrelation function (BACF) approaches zero with increasing number of randomly mode coupled fibre sections. A zero BACF signifies that an emulator has large numbers of randomly distributed PMF sections and its presence means the opposite. The availability of SO-PMD in the emulators made the autocorrelation function (ACF) x asymmetric. In the absence of SO-PMD the ACF for a PMD emulator is symmetric. SO-PMD has no effect on the BACF. Polarization-optical time domain reflectometry (P-OTDR) measurements have shown that certain fibre sections along fibre link lengths have higher FO-PMD (HiFO-PMD) than other sections. This study investigates the impact of a HiFO-PMD section on the overall FO- and SO-PMD, the output state of polarization (SOP) and system performance on deployed fibres (through emulation). Results show that when the wavelength-independent FO-PMD vector of the HiFO-PMD section is greater than the FO-PMD contributions from the rest of the fibre link, the mean FO-PMD of the entire link is biased towards that of the HiFO-PMD section and the SO-PMD increases (β ≠ 0o or 180o) or remains fixed (β = 0o or 180o) depending on the coupling angle β between the HiFO-PMD section and the rest of the fibre link. In addition, the FO-PMD statistics deviates away from the theoretical Maxwellian distribution. However, experimental results show that the HiFO-PMD section has negligible influence on the SOPMD statistical distribution. An increase in the amount of FO-PMD on a HiFO-PMD section reduces the output SOP spread to a given minimum, in this study the minimum was reached when the HiFO-PMD ≥ 35 ps. However, the outcome of the output SOP spread depends on the location of the HiFO-PMD section along the fibre link length. It was found that when the HiFO-PMD section introduces SO-PMD, the bit error rate (BER) is much higher compared to when it does not introduce SO-PMD.
- Full Text:
- Date Issued: 2009
Characterization of polarization dependent loss in optical fibres and optical components in the presence of polarization mode dispersion
- Authors: Pelaelo, Gaoboelwe
- Date: 2008
- Subjects: Fiber optics , Polarization (Light)
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:10528 , http://hdl.handle.net/10948/695 , Fiber optics , Polarization (Light)
- Description: In this study, the Jones matrix eigenanalysis (JME), optical spectrum analyzer (OSA) and polarization scrambling methods were used to investigate polarization dependent loss (PDL) in the presence of polarization mode dispersion (PMD) in optical components and fibres. The PDL measurements were conducted both in the laboratory and in the field. For field measurements, a buried link (28.8 km) and an aerial fibre (7.1 km) were extensively studied. The findings obtained from these studies are very important for network operators who must assess the impact of PDL on the network reliability. The three different PDL measurement methods (JME, OSA and polarization scrambling) were compared and their PDL values were found to agree very well at the selected wavelength of 1550 nm. Concatenation of PDL components showed that as expected, PDL increase as the number of PDL components were added. The interactions between PMD and PDL measurements were analyzed. A PMD/PDL emulator was constructed. We observed that PMD decreased while PDL increased. The PMD decrease was a result of the PMD vector cancellation enhanced by the randomly distributed mode coupling angles while PDL increase was a result of each PM fibre segments contributing to the overall global PDL. It was observed that the presence of PMD in a link containing PDL, results in PDL being wavelength dependent and this resulted in the extraction of the PMD information from the PDL data. PDL was found to be Maxwellian distributed when considering low values of PMD. High PMD values resulted in the PDL distribution deviating from Maxwellian. Long-term PDL and PMD (average DGD) measurements indicated that the PDL and PMD varied slowly with time and wavelength for both the laboratory and field measurements. It was observed that the BER increase as both PDL and PMD increased for simulated optical link.
- Full Text:
- Date Issued: 2008
Characterization of polarization effects on deployed aerial optical fibre in South Africa
- Authors: Mudau, Azwitamisi Eric
- Date: 2008
- Subjects: Polarization (Light) , Fiber optics
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:10521 , http://hdl.handle.net/10948/1060 , Polarization (Light) , Fiber optics
- Description: In this study, two polarization effects, namely the state of polarization (SOP) and polarization mode dispersion (PMD) in optical fibre cable are investigated. The change in polarization effects introduces errors in optical fibre communication system. We find that the SOP drifts slowly in buried cables, and rapidly in aerial cables. This is because buried cables are located in a static environment, whereas aerial cables are exposed directly to a dynamic environment. The SOP change in aerial cable shows significant correlation with its environment (the global radiation, temperature and wind). The autocorrelation function (ACF) was not performed in buried cable, since they do not satisfy the ACF assumption, whereas in aerial cable it is found that the ACF of the SOP decorrelates quite quickly during the day. The 50 percent decorrelation time during the day and night are 9.6 and 30.4 minutes, respectively. During the day the properties of the optical fibre change rapidly as a result of the rapidly changing environmental conditions, whereas at night the environmental conditions change relatively slowly. Fast Fourier Transform (FFT) of the SOP fluctuations show discrete peaks, which corresponds to the wind induced vibrational frequency of the cable. The PMD fluctuations for undeployed and deployed aerial optical fibre cable are monitored using the generalized interferometric technique (GINTY). It is found that the PMD measured with polarization scrambling is more scattered but more reliable than the PMD measured without polarization scrambling. This is because the PMD obtained with polarization scrambling is averaged over different input and output (I/O) SOP pairs. For deployed aerial cable, it is found that the PMD measured without polarization scrambling fluctuates rapidly during high wind speed conditions. Furthermore, there is a correlation between the measured PMD and the change in temperature. It is found that the change in temperature has a stronger influence than the wind on the PMD of the optical fibre link.
- Full Text:
- Date Issued: 2008
Constructing confidence intervals for polarization mode dispersion
- Authors: Erlank, Warrick
- Date: 2008
- Subjects: Fiber optics , Polarization (Light)
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:10571 , http://hdl.handle.net/10948/951 , Fiber optics , Polarization (Light)
- Description: Polarization mode dispersion (PMD) causes significant impairment in high bit-rate optical telecommunications systems. Knowledge of a fibre’s PMD mean value, and the relevant confidence interval, is essential for determining a fibre’s maximum allowable bit-rate. Various methods of confidence interval construction for time series data were tested in this dissertation using simulation. These included the autocovariance-matrix methods as suggested by Box and Jenkins, as well as the more practical and simpler batch means methods. Some of these methods were shown to be significantly better than the standard method of calculating confidence intervals for non time series data. The best of the tested methods were used on actual PMD data. The effect of using polarization scramblers was also tested.
- Full Text:
- Date Issued: 2008
Investigation of polarization mode dispersion measurement perfomance in optical fibre with a focus on the fixed analyzer technique
- Authors: Gamatham, Romeo Reginald Gunther
- Date: 2008
- Subjects: Fiber optics , Polarization (Light)
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:10524 , http://hdl.handle.net/10948/957 , Fiber optics , Polarization (Light)
- Description: The work presented in this dissertation is a comparative study of polarization mode dispersion (PMD) measurement performance where the fixed analyzer (FA) technique was built and tested for the first time in South Africa. Techniques involved in the study are: the Jones matrix eigenanalysis (JME), generalised interferometric technique (GINTY) and the FA technique, with a particular focus on the FA technique. The FA PMD measurement technique determines the average differential group delay (DGD) from the transmitted intensity spectrum through a polarizer and has three analysis methods (extrema counting, mean level crossing and Fourier analysis) which were all evaluated. PMD measurements were performed in the laboratory on several different fibre types and in the field on buried deployed Telkom fibre links (28.8 km). The techniques showed good agreement in the measured PMD value, both in the laboratory and field measurements. In particular very good agreement was found between the JME average DGD and the extrema counting analysis PMD value. The GINTY and FA Fourier analysis method also gave very similar PMD values. It was found that the fibre birefringence and the mode coupling manifest in different ways on the intensity spectrum. By using the FA ratio method, the length regimes of the different fibre types were determined. Three characteristics of the FA technique were investigated, namely: wavelength window variation, sampling and input SOP scrambling. It was found that the wavelength window and the PMD are inversely proportional. Correct sampling plays a significant role in determining the correct measured PMD value. Lastly an average PMD value over the PMD values for different input SOPs serves as a better representation of the true PMD value. An additional study showed that the FA technique and a developed Poincaré sphere analysis method agree very well regarding the PMD value.
- Full Text:
- Date Issued: 2008
Field and laboratory measurements of PMD using interferometric techniques
- Authors: Mankga, Maphuti Comfort
- Date: 2007
- Subjects: Fiber optics , Polarization (Light)
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:10531 , http://hdl.handle.net/10948/557 , Fiber optics , Polarization (Light)
- Description: In this study, the generalized and traditional interferometric techniques (GINTY and TINTY) are used to investigate some of the important aspects of Polarization Mode Dispersion (PMD) phenomenon in optical fibres. Measurements of PMD and chromatic dispersion (CD) are performed on buried optical fibre cable in the Pretoria Telkom’s metropolitan network. The upgradeability of this network was investigated, and it was observed that just over a half of the fibres are upgradeable to 10 Gb.s-1 transmissions. Long-haul aerial network in the Northern Cape was also tested for upgradeability to 10 Gb.s-1. It was found that 41 percent of the fibres tested are upgradeable to 10 Gb.s-1. Long-term monitoring showed that PMD varies rapidly in aerial fibres and, on the other hand, it is relatively stable in buried cables. Investigations on the accuracy of the techniques showed that polarization scrambling is essential for the reduction of the measurements uncertainties. Furthermore, it was observed that TINTY underestimates the single scan PMD distributions. The study on the effect of the change in mode coupling on various fibre configurations was performed, and fibres showed a reduction in PMD after the introduction of mode coupling. Measurements of PMD conducted in the laboratory on cabled fibre with low PMD showed the floor sensitivity of TINTY. Comparison between GINTY and Jones Matrix Eigeanalysis (JME) PMD measurements methods were performed on an emulator, and the results showed a good agreement in the measured PMD.
- Full Text:
- Date Issued: 2007
A VLBI polarisation study of 43 GHZ SiO masers towards VY CMA
- Authors: Richter, Laura
- Date: 2006
- Subjects: Very long baseline interferometry , Polarization (Light) , Masers
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5498 , http://hdl.handle.net/10962/d1005284
- Description: This thesis reports the calibration, imaging and analysis of one epoch of VLBI observations of the v (italics) = J (italics) = 1-0 transition of SiO towards VY CMa. Full polarisation information was recorded, allowing high resolution synthesis maps of each of the four Stokes parameters to be produced. A total of 81 maser components were extracted from the total intensity map, each approximately 1 mas in size. The emission spans approximately 100 x 80 mas in right ascension and declination and is concentrated to the east. The maser component positions were fitted to a ring of radius ~ 3.2R₊ (italics), or 7.2 x 1O¹⁴ cm for a stellar distance of 1.5 kpc. If the stellar position is assumed to be the centre of this ring then almost all of the maser components fall within the inner dust shell radius, which is at ~ 5R (italics)ϰ All of the maser components fall between 1.5R (italics)ϰ and 6R (italics)ϰ. A velocity gradient with position angle was observed in the sparsely filled western region of the maser ring. If interpreted as evidence of shell rotation, this gradient implies a rotational velocity of v (italics) rot (subscirpt) sin i (italics) = 18 km.s⁻¹. The fractional circular and linear polarisations of the maser spots were derived from the Stokes parameter maps. The mean fractional circular polarisation of the masers components was ~ 2 percent and the median fractional linear polarisation was ~ 6 percent, with many spots displaying over ~ 30 percent linear polarisation. The mean circular polarisation implies a magnetic field of ~ 4 G in the SiO maser region if the polarisation is due to Zeeman splitting. Two maser components display a rotation of linear polarisation position angle with velocity, possibly implying a connection between the magnetic field and the velocity field variations in the region of these components.
- Full Text:
- Date Issued: 2006