A community–wide trophic structure analysis in intertidal ecosystems on the south coast of South Africa
- Authors: Gusha, Molline Natanah C
- Date: 2018
- Subjects: Food chains (Ecology) , Coastal ecology -- South Africa , Intertidal ecology -- South Africa , Marine animals -- Climatic factors -- South Africa , Marine animals -- Food -- South Africa , Marine animals -- Habitat -- South Africa
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/63312 , vital:28392
- Description: Coastal ecosystems are more than microhabitats for marine species. Acting as atmospheric carbon filters, species in coastal environments are directly and/or indirectly associated with transferring organic carbon to species at higher trophic levels. However, the progressing change in global climatic conditions has created the need to assess the consequences of the shifting conditions on both direct and indirect interactions of physical and biological parameters at species and/or community levels. From these perturbations, the effects of biotic homogenization on ecosystem functioning and resilience can also be realised. Herein, I discuss the effects of temperature, nutrients, biotic interactions and habitat characteristics on community dynamics within intertidal rock pool systems on the south coast of South Africa using complementary qualitative and quantitative analytical methods. Seasonality had a significant impact on rock pool species with changes in composition and higher richness in winter than summer. The first two axes of the Canonical Correspondence Analysis (CCA) of the plant and animal communities each explained ~20% of the relationship between physico-chemical parameters and biological variables. The CCA highlighted that seasonal shifts in chlorophyll-a, conductivity, salinity, water depth, surface area and substratum type indirectly influenced species composition. For example, pools with heterogenous substratum comprising a mixture of sand and rock exhibited higher species diversity than homogenously bedded pools. Furthermore, a Bayesian analysis of community structure based on stable isotope ratios was used to assess how trophic pathways of carbon and nitrogen elements reflected community composition and richness. Isotopic biplots showed an increase in food web size, food chain length and the trophic positions of fish and some gastropods in winter compared to summer. There was greater dietary overlap among species in larger pools. In addition, while isotopic nearest neighbour distance and species evenness also showed a positive increase with pool size in summer, the same metrics were almost constant across all pool sizes in winter. These changes in food web packing and species evenness suggest seasonal preferences or migration of species in summer from small pools to larger pools with stable physico-chemical parameters. Furthermore, the presence of fish was seen to promote trophic diversity within some pools. The results from laboratory microcosm grazing experiments demonstrated significant direct and indirect effects of temperature and nutrients within plankton communities. Copepod grazing had an indirect positive influence on phytoplankton biomass and size structure while the interactive effects of temperature and nutrients had contrasting effects on both phytoplankton communities and copepod biomass. Shifts in water chemistry and nutrient treatments were also observed in the presence of copepods. Phosphate addition had a recognisable impact on plankton communities. The presented synthesis of the literature mainly highlighted that positive effects at one trophic level do not always positively cascade into the next trophic level which is evidence of complex interactive biotic, habitat and water chemistry effects within these intertidal ecosystems. Thus, to further understand cascading effects or community structure functioning in general, there may be a need to incorporate and understand species functional traits and how they contribute to trophic diversity, community restructuring and functioning in coastal habitats.
- Full Text:
- Date Issued: 2018
- Authors: Gusha, Molline Natanah C
- Date: 2018
- Subjects: Food chains (Ecology) , Coastal ecology -- South Africa , Intertidal ecology -- South Africa , Marine animals -- Climatic factors -- South Africa , Marine animals -- Food -- South Africa , Marine animals -- Habitat -- South Africa
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/63312 , vital:28392
- Description: Coastal ecosystems are more than microhabitats for marine species. Acting as atmospheric carbon filters, species in coastal environments are directly and/or indirectly associated with transferring organic carbon to species at higher trophic levels. However, the progressing change in global climatic conditions has created the need to assess the consequences of the shifting conditions on both direct and indirect interactions of physical and biological parameters at species and/or community levels. From these perturbations, the effects of biotic homogenization on ecosystem functioning and resilience can also be realised. Herein, I discuss the effects of temperature, nutrients, biotic interactions and habitat characteristics on community dynamics within intertidal rock pool systems on the south coast of South Africa using complementary qualitative and quantitative analytical methods. Seasonality had a significant impact on rock pool species with changes in composition and higher richness in winter than summer. The first two axes of the Canonical Correspondence Analysis (CCA) of the plant and animal communities each explained ~20% of the relationship between physico-chemical parameters and biological variables. The CCA highlighted that seasonal shifts in chlorophyll-a, conductivity, salinity, water depth, surface area and substratum type indirectly influenced species composition. For example, pools with heterogenous substratum comprising a mixture of sand and rock exhibited higher species diversity than homogenously bedded pools. Furthermore, a Bayesian analysis of community structure based on stable isotope ratios was used to assess how trophic pathways of carbon and nitrogen elements reflected community composition and richness. Isotopic biplots showed an increase in food web size, food chain length and the trophic positions of fish and some gastropods in winter compared to summer. There was greater dietary overlap among species in larger pools. In addition, while isotopic nearest neighbour distance and species evenness also showed a positive increase with pool size in summer, the same metrics were almost constant across all pool sizes in winter. These changes in food web packing and species evenness suggest seasonal preferences or migration of species in summer from small pools to larger pools with stable physico-chemical parameters. Furthermore, the presence of fish was seen to promote trophic diversity within some pools. The results from laboratory microcosm grazing experiments demonstrated significant direct and indirect effects of temperature and nutrients within plankton communities. Copepod grazing had an indirect positive influence on phytoplankton biomass and size structure while the interactive effects of temperature and nutrients had contrasting effects on both phytoplankton communities and copepod biomass. Shifts in water chemistry and nutrient treatments were also observed in the presence of copepods. Phosphate addition had a recognisable impact on plankton communities. The presented synthesis of the literature mainly highlighted that positive effects at one trophic level do not always positively cascade into the next trophic level which is evidence of complex interactive biotic, habitat and water chemistry effects within these intertidal ecosystems. Thus, to further understand cascading effects or community structure functioning in general, there may be a need to incorporate and understand species functional traits and how they contribute to trophic diversity, community restructuring and functioning in coastal habitats.
- Full Text:
- Date Issued: 2018
Cape Fold Ecoregion fish community ecology and responses to stressors
- Authors: Broom, Casey Jay
- Date: 2022-10-14
- Subjects: Cyprinidae South Africa Western Cape , Freshwater fishes South Africa Western Cape , Cyprinidae Habitat South Africa Western Cape , Food chains (Ecology) , Restoration ecology South Africa Western Cape , Riparian restoration South Africa Western Cape
- Language: English
- Type: Academic theses , Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/365644 , vital:65772 , DOI https://doi.org/10.21504/10962/365644
- Description: Freshwater fishes are in global decline and fish as a group are the most imperilled of all vertebrates. Freshwater systems are among the most threatened globally, largely owing to their comparatively high species and habitat diversity while occupying a minute fraction of the Earth’s surface. In South Africa, invasion by non-native fishes has had a devastating effect on freshwater systems across the country. Numerous other stressors and anthropogenic impacts continue to impact these systems, including habitat degradation, water abstraction and global change effects. In general, South African freshwater systems are under-studied and there is a lack of baseline biological and ecological studies on many freshwater fish species. The Cape Fold Ecoregion (CFE) of South Africa is a particularly vulnerable region, with many range-restricted species and highly fragmented native fish ranges following high invasion rates. Within the CFE, the Olifants-Doring River System (ODRS) is of primary concern owing to the high endemism and imperilled status of its freshwater fish species. The Rondegat River in the ODRS is of notable conservation value, as it hosts populations of important endemic CFE species. This river is unique, being the site of the first alien fish eradication programme of its kind in South Africa. Thus the Rondegat River, and in particular its imperilled cyprinid assemblage, is used here as a case study of the responses and community dynamics of recovering freshwater fish species. The members of this cyprinid assemblage are Sedercypris calidus, Pseudobarbus phlegethon and Labeobarbus seeberi. Sedercypris calidus and L. seeberi are listed by the International Union for the Conservation of Nature (IUCN) as “Near-Threatened”, while P. phlegethon is listed as “Endangered”. Understanding the dynamics and responses to understudied vulnerable fish communities in the wake of restoration efforts was the overarching goal of this thesis. The first chapter served as a review of current knowledge of the CFE, the Rondegat River, the myriad stressors that have impacted on or are projected to affect this region, and the freshwater fish species on which those stressors act. My first investigations served as an extension of the existing Rondegat River monitoring programme, making use of remote underwater video (RUV) data to assess relative abundance and habitat associations of the focal species (Chapter 2). A relatively limited spatial range of P. phlegethon was established, which was suggested to be a result of relatively highly specialised habitat requirements and sensitivity to disturbance. Sedercypris calidus was confirmed as a relatively more abundant and ubiquitous species across the length of the Rondegat River, sharing much of the lower and middle reaches with L. seeberi. I sought to use experimental trials of functional response, as a proxy for feeding performance, across representative temperatures and relevant prey types, in the spatially overlapping S. calidus and L. seeberi (Chapter 3). Labeobarbus seeberi generally outcompeted S. calidus across temperature treatments and prey types. The ecomorphology and diet of all three species were used to construct trophic profiles, which suggested that there was a high degree of feeding capacity overlap between L. seeberi and S. calidus, while P. phlegethon diverged from the other two species (Chapter 4). Gut content suggested that all three species overlapped broadly in diet. This indicated that the realised trophic niche of these species is similar, despite some morphological specialisation. I then used RUV data to investigate in-situ feeding behaviours, with the aim to disentangle the nuances of community dynamics and mechanisms of coexistence in the cyprinid assemblage (Chapter 5). I found that, despite the higher feeding performance of L. seeberi (Chapter 3) and its overlaps in diet and feeding capacity with S. calidus (Chapter 4), S. calidus is able to mitigate competitive pressures through foraging mode switching and exploitation of allochthonous food inputs. Evidence for further habitat and prey selectivity in Pseudobarbus phlegethon was gathered based on dependence on complex habitats and pool refugia for the majority of its feeding, supporting this species as a headwater specialist; alongside signals of its spatial and habitat use patterns (Chapter 2). While S. calidus and L. seeberi were found to be less habitat-specific than P. phlegethon, caution was noted in the potential for ongoing stressors, such as habitat destruction, loss of river connectivity and global change effects, to impact on the reproductive success of these two species. Stressors affecting the habitats and sensitive invertebrate taxa upon which all three species depend continue to threaten the Rondegat system, highlighting the need to maintain ecosystem integrity through conservation interventions. There remains significant scope to maintain restoration efforts in the Rondegat River and other river systems of the CFE, through direct conservation actions, enhanced community awareness, indigenous riparian vegetation restoration and involvement of local stakeholders in various conservation-centred activities. , Thesis (PhD) -- Faculty of Science, Ichthyology and Fisheries Science, 2022
- Full Text:
- Date Issued: 2022-10-14
- Authors: Broom, Casey Jay
- Date: 2022-10-14
- Subjects: Cyprinidae South Africa Western Cape , Freshwater fishes South Africa Western Cape , Cyprinidae Habitat South Africa Western Cape , Food chains (Ecology) , Restoration ecology South Africa Western Cape , Riparian restoration South Africa Western Cape
- Language: English
- Type: Academic theses , Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/365644 , vital:65772 , DOI https://doi.org/10.21504/10962/365644
- Description: Freshwater fishes are in global decline and fish as a group are the most imperilled of all vertebrates. Freshwater systems are among the most threatened globally, largely owing to their comparatively high species and habitat diversity while occupying a minute fraction of the Earth’s surface. In South Africa, invasion by non-native fishes has had a devastating effect on freshwater systems across the country. Numerous other stressors and anthropogenic impacts continue to impact these systems, including habitat degradation, water abstraction and global change effects. In general, South African freshwater systems are under-studied and there is a lack of baseline biological and ecological studies on many freshwater fish species. The Cape Fold Ecoregion (CFE) of South Africa is a particularly vulnerable region, with many range-restricted species and highly fragmented native fish ranges following high invasion rates. Within the CFE, the Olifants-Doring River System (ODRS) is of primary concern owing to the high endemism and imperilled status of its freshwater fish species. The Rondegat River in the ODRS is of notable conservation value, as it hosts populations of important endemic CFE species. This river is unique, being the site of the first alien fish eradication programme of its kind in South Africa. Thus the Rondegat River, and in particular its imperilled cyprinid assemblage, is used here as a case study of the responses and community dynamics of recovering freshwater fish species. The members of this cyprinid assemblage are Sedercypris calidus, Pseudobarbus phlegethon and Labeobarbus seeberi. Sedercypris calidus and L. seeberi are listed by the International Union for the Conservation of Nature (IUCN) as “Near-Threatened”, while P. phlegethon is listed as “Endangered”. Understanding the dynamics and responses to understudied vulnerable fish communities in the wake of restoration efforts was the overarching goal of this thesis. The first chapter served as a review of current knowledge of the CFE, the Rondegat River, the myriad stressors that have impacted on or are projected to affect this region, and the freshwater fish species on which those stressors act. My first investigations served as an extension of the existing Rondegat River monitoring programme, making use of remote underwater video (RUV) data to assess relative abundance and habitat associations of the focal species (Chapter 2). A relatively limited spatial range of P. phlegethon was established, which was suggested to be a result of relatively highly specialised habitat requirements and sensitivity to disturbance. Sedercypris calidus was confirmed as a relatively more abundant and ubiquitous species across the length of the Rondegat River, sharing much of the lower and middle reaches with L. seeberi. I sought to use experimental trials of functional response, as a proxy for feeding performance, across representative temperatures and relevant prey types, in the spatially overlapping S. calidus and L. seeberi (Chapter 3). Labeobarbus seeberi generally outcompeted S. calidus across temperature treatments and prey types. The ecomorphology and diet of all three species were used to construct trophic profiles, which suggested that there was a high degree of feeding capacity overlap between L. seeberi and S. calidus, while P. phlegethon diverged from the other two species (Chapter 4). Gut content suggested that all three species overlapped broadly in diet. This indicated that the realised trophic niche of these species is similar, despite some morphological specialisation. I then used RUV data to investigate in-situ feeding behaviours, with the aim to disentangle the nuances of community dynamics and mechanisms of coexistence in the cyprinid assemblage (Chapter 5). I found that, despite the higher feeding performance of L. seeberi (Chapter 3) and its overlaps in diet and feeding capacity with S. calidus (Chapter 4), S. calidus is able to mitigate competitive pressures through foraging mode switching and exploitation of allochthonous food inputs. Evidence for further habitat and prey selectivity in Pseudobarbus phlegethon was gathered based on dependence on complex habitats and pool refugia for the majority of its feeding, supporting this species as a headwater specialist; alongside signals of its spatial and habitat use patterns (Chapter 2). While S. calidus and L. seeberi were found to be less habitat-specific than P. phlegethon, caution was noted in the potential for ongoing stressors, such as habitat destruction, loss of river connectivity and global change effects, to impact on the reproductive success of these two species. Stressors affecting the habitats and sensitive invertebrate taxa upon which all three species depend continue to threaten the Rondegat system, highlighting the need to maintain ecosystem integrity through conservation interventions. There remains significant scope to maintain restoration efforts in the Rondegat River and other river systems of the CFE, through direct conservation actions, enhanced community awareness, indigenous riparian vegetation restoration and involvement of local stakeholders in various conservation-centred activities. , Thesis (PhD) -- Faculty of Science, Ichthyology and Fisheries Science, 2022
- Full Text:
- Date Issued: 2022-10-14
Ecological role of free-living bacteria in the microbial food web of the temporarily open/closed East Kleinemonde Estuary, South Africa
- Authors: Allan, Elizabeth Louise
- Date: 2008
- Subjects: Bacterial growth -- South Africa -- Eastern Cape , Estuarine ecology -- South Africa -- Eastern Cape , Estuaries -- South Africa -- Eastern Cape , Microbial ecology -- South Africa -- Eastern Cape , Nutrient cycles -- South Africa -- Eastern Cape , Food chains (Ecology)
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5666 , http://hdl.handle.net/10962/d1005351 , Bacterial growth -- South Africa -- Eastern Cape , Estuarine ecology -- South Africa -- Eastern Cape , Estuaries -- South Africa -- Eastern Cape , Microbial ecology -- South Africa -- Eastern Cape , Nutrient cycles -- South Africa -- Eastern Cape , Food chains (Ecology)
- Description: The main aim of this study was to assess the “top-down” and “bottom-up” control of bacterial production in the small temporarily open/closed East Kleinemonde Estuary, situated on the south-eastern coastline of southern Africa. Spatial and temporal patterns in bacterial abundance, biomass and production and the importance of abiotic and biotic factors were investigated over the period May 2006 to April 2007. The trophic interactions between bacteria, phytoplankton, nanoflagellates (< 20 μm), microzooplankton (< 200 μm) and mesozooplankton (< 2 000 μm) were investigated during winter and summer. Bacterial abundance, biomass and production ranged between 1.00 × 10⁹ and 4.93 × 10⁹ cells 1⁻¹, 32.4 and 109 μg C 1⁻¹ and 0.01 and 1.99 μg C 1⁻¹ h⁻¹, respectively. With a few exceptions there were no spatial patterns in the values. Bacterial abundance, biomass and production, however, demonstrated a distinct temporal pattern with the lowest values consistently recorded during the winter months. Nanoflagellate and bacterial abundances were significantly correlated to one another (lower reaches: r = 0.818, p < 0.001; middle reaches: r = 0.628, p < 0.001; upper reaches: r = 0.484, p < 0.05) suggesting a strong predator-prey relationship. The frequency of visibly infected bacterial cells and the mean number of virus particles within each bacterial cell during this study demonstrated no temporal or spatial patterns and ranged from 0.5 to 6.1 % and 12.0 to 37.5 virus particles per bacterium, respectively. Viral infection and lysis was thus a constant source of bacterial mortality throughout the year. The estimated percentage of bacterial production removed by viral lysis ranged between 7.8 and 88.9% of the total which suggests that viral lysis represented a very important source of bacterial mortality during this study. The biological interactions between the selected components of the plankton community demonstrated that among the heterotrophic components of the plankton, the nanoflagellates were identified as the most important consumers of bacteria and small phytoplankton cells (< 20 μm). In the presence of microzooplankton the impact of the nanoflagellates on both the bacteria and phytoplankton was reduced, indicating that larger heterotrophs were preying upon the nanoflagellates. Mesozooplankton, however, appeared to exert the greatest impact on nanoflagellates. In the cascading experiments, the data suggest that mesozooplankton consume nanoflagellates, which resulted in a decrease in the predation impact of these organisms on the bacteria. This result is consistent with predator-prey cascades. The presence of the larger heterotrophs therefore, mediates the interactions between the primary bacterivores, the nanoflagellates, and the bacteria within the temporarily open/closed East Kleinemonde Estuary.
- Full Text:
- Date Issued: 2008
- Authors: Allan, Elizabeth Louise
- Date: 2008
- Subjects: Bacterial growth -- South Africa -- Eastern Cape , Estuarine ecology -- South Africa -- Eastern Cape , Estuaries -- South Africa -- Eastern Cape , Microbial ecology -- South Africa -- Eastern Cape , Nutrient cycles -- South Africa -- Eastern Cape , Food chains (Ecology)
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5666 , http://hdl.handle.net/10962/d1005351 , Bacterial growth -- South Africa -- Eastern Cape , Estuarine ecology -- South Africa -- Eastern Cape , Estuaries -- South Africa -- Eastern Cape , Microbial ecology -- South Africa -- Eastern Cape , Nutrient cycles -- South Africa -- Eastern Cape , Food chains (Ecology)
- Description: The main aim of this study was to assess the “top-down” and “bottom-up” control of bacterial production in the small temporarily open/closed East Kleinemonde Estuary, situated on the south-eastern coastline of southern Africa. Spatial and temporal patterns in bacterial abundance, biomass and production and the importance of abiotic and biotic factors were investigated over the period May 2006 to April 2007. The trophic interactions between bacteria, phytoplankton, nanoflagellates (< 20 μm), microzooplankton (< 200 μm) and mesozooplankton (< 2 000 μm) were investigated during winter and summer. Bacterial abundance, biomass and production ranged between 1.00 × 10⁹ and 4.93 × 10⁹ cells 1⁻¹, 32.4 and 109 μg C 1⁻¹ and 0.01 and 1.99 μg C 1⁻¹ h⁻¹, respectively. With a few exceptions there were no spatial patterns in the values. Bacterial abundance, biomass and production, however, demonstrated a distinct temporal pattern with the lowest values consistently recorded during the winter months. Nanoflagellate and bacterial abundances were significantly correlated to one another (lower reaches: r = 0.818, p < 0.001; middle reaches: r = 0.628, p < 0.001; upper reaches: r = 0.484, p < 0.05) suggesting a strong predator-prey relationship. The frequency of visibly infected bacterial cells and the mean number of virus particles within each bacterial cell during this study demonstrated no temporal or spatial patterns and ranged from 0.5 to 6.1 % and 12.0 to 37.5 virus particles per bacterium, respectively. Viral infection and lysis was thus a constant source of bacterial mortality throughout the year. The estimated percentage of bacterial production removed by viral lysis ranged between 7.8 and 88.9% of the total which suggests that viral lysis represented a very important source of bacterial mortality during this study. The biological interactions between the selected components of the plankton community demonstrated that among the heterotrophic components of the plankton, the nanoflagellates were identified as the most important consumers of bacteria and small phytoplankton cells (< 20 μm). In the presence of microzooplankton the impact of the nanoflagellates on both the bacteria and phytoplankton was reduced, indicating that larger heterotrophs were preying upon the nanoflagellates. Mesozooplankton, however, appeared to exert the greatest impact on nanoflagellates. In the cascading experiments, the data suggest that mesozooplankton consume nanoflagellates, which resulted in a decrease in the predation impact of these organisms on the bacteria. This result is consistent with predator-prey cascades. The presence of the larger heterotrophs therefore, mediates the interactions between the primary bacterivores, the nanoflagellates, and the bacteria within the temporarily open/closed East Kleinemonde Estuary.
- Full Text:
- Date Issued: 2008
Evaluating the trophic ecology and feeding habits of three divergent lineages of Sandelia bainsii (Teleostei: Anabantidae), from the Eastern Cape Rivers using stable isotope analysis
- Authors: Nkomo, Thulisile
- Date: 2022-10-14
- Subjects: Anabantidae , Trophic ecology , Food chains (Ecology) , Food web , Freshwater fishes Food , Stable isotopes
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/364984 , vital:65667
- Description: Despite supporting a disproportionately large fraction of the global biodiversity, freshwater ecosystems are ranked as the most highly threatened habitats on the planet, ahead of both terrestrial and marine ecosystems. Many regions are still characterised by limited knowledge regarding the taxonomy and ecology of freshwater fish taxa. The need for ecological information is increasingly becoming important due to the discovery of new species and unique lineages, which require conservation management. The aim of this study was thus to evaluate the trophic ecology and feeding habits of the three recently described and divergent Sandelia bainsii lineages, namely Sandelia sp. ‘bainsii Kowie’ from the Great Fish River, Sandelia sp. ‘bainsii Keiskamma’ found in the Keiskamma River, and Sandelia sp. ‘bainsii Buffalo’ confined to the Buffalo River system in the Amathole-Winterberg freshwater ecoregion in the Eastern Cape Province, South Africa. Based on the allopatric distribution and the generalist feeding habits of these lineages, this thesis postulated that these three lineages were likely to show similar trophic ecology patterns, different dietary composition and as a result would have variable trophic positioning in the different river systems. Therefore, the primary objectives were to use stable isotope analysis to (1) evaluate the food web patterns of the river systems where the three S. bainsii lineages occurred, and (2) determine dietary source contributions for the three lineages using isotope mixing models. The results revealed general variability and significant differences in the δ13C and δ¹⁵N values for the different basal resources, macroinvertebrates and fish community across the different headwater streams. Within and across the different rivers, the S. bainsii lineages exhibited variable isotopic niche sizes, which appeared to coincide with the variation in the isotopic composition of the individual communities. Furthermore, these lineages did not exhibit any discernible patterns in their interspecific interactions in different habitats. This suggests that these lineages’ isotopic niche patterns were largely influenced by spatial differences in both trophic resources and probable interactions with contraspecifics. Assessment of trophic positions of S. bainsii lineages showed that the three lineages had higher trophic positions than other co-occurring species at most sites, except in the Buffalo River. This suggest that the different lineages were generally top predators in the different river systems. Although S. ‘bainsii Buffalo’ had a lower trophic position compared to other co-occurring species, its trophic position was generally characterised by high uncertainty, indicating that this lineage was likely influenced by the occurrence of diet sources that had highly variable stable isotope values. Findings from stable isotope mixing models revealed that the diet sources varied from the dominance of either single diet source in the Fairburn and Tyume 1 River to the importance of multiple prey sources from the Lushington and Kat River system. This suggests that despite being a top predator at most sites, the diet sources for the different lineages were highly variable. The patterns observed in this study did not appear to be attributed to species divergence possibly caused by allopatric speciation, but rather differences in food web characteristics of the river systems, as well as the lineages interspecific relationships and their generalized feeding strategies. Understanding the trophic dynamics of these lineages will assist in implementing effective conservation strategies and policies dealing with narrowly distributed species that are threatened by habitat fragmentation and invasion of piscivorous fish. , Thesis (MSc) -- Faculty of Science, Ichthyology and Fisheries Science, 2022
- Full Text:
- Date Issued: 2022-10-14
- Authors: Nkomo, Thulisile
- Date: 2022-10-14
- Subjects: Anabantidae , Trophic ecology , Food chains (Ecology) , Food web , Freshwater fishes Food , Stable isotopes
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/364984 , vital:65667
- Description: Despite supporting a disproportionately large fraction of the global biodiversity, freshwater ecosystems are ranked as the most highly threatened habitats on the planet, ahead of both terrestrial and marine ecosystems. Many regions are still characterised by limited knowledge regarding the taxonomy and ecology of freshwater fish taxa. The need for ecological information is increasingly becoming important due to the discovery of new species and unique lineages, which require conservation management. The aim of this study was thus to evaluate the trophic ecology and feeding habits of the three recently described and divergent Sandelia bainsii lineages, namely Sandelia sp. ‘bainsii Kowie’ from the Great Fish River, Sandelia sp. ‘bainsii Keiskamma’ found in the Keiskamma River, and Sandelia sp. ‘bainsii Buffalo’ confined to the Buffalo River system in the Amathole-Winterberg freshwater ecoregion in the Eastern Cape Province, South Africa. Based on the allopatric distribution and the generalist feeding habits of these lineages, this thesis postulated that these three lineages were likely to show similar trophic ecology patterns, different dietary composition and as a result would have variable trophic positioning in the different river systems. Therefore, the primary objectives were to use stable isotope analysis to (1) evaluate the food web patterns of the river systems where the three S. bainsii lineages occurred, and (2) determine dietary source contributions for the three lineages using isotope mixing models. The results revealed general variability and significant differences in the δ13C and δ¹⁵N values for the different basal resources, macroinvertebrates and fish community across the different headwater streams. Within and across the different rivers, the S. bainsii lineages exhibited variable isotopic niche sizes, which appeared to coincide with the variation in the isotopic composition of the individual communities. Furthermore, these lineages did not exhibit any discernible patterns in their interspecific interactions in different habitats. This suggests that these lineages’ isotopic niche patterns were largely influenced by spatial differences in both trophic resources and probable interactions with contraspecifics. Assessment of trophic positions of S. bainsii lineages showed that the three lineages had higher trophic positions than other co-occurring species at most sites, except in the Buffalo River. This suggest that the different lineages were generally top predators in the different river systems. Although S. ‘bainsii Buffalo’ had a lower trophic position compared to other co-occurring species, its trophic position was generally characterised by high uncertainty, indicating that this lineage was likely influenced by the occurrence of diet sources that had highly variable stable isotope values. Findings from stable isotope mixing models revealed that the diet sources varied from the dominance of either single diet source in the Fairburn and Tyume 1 River to the importance of multiple prey sources from the Lushington and Kat River system. This suggests that despite being a top predator at most sites, the diet sources for the different lineages were highly variable. The patterns observed in this study did not appear to be attributed to species divergence possibly caused by allopatric speciation, but rather differences in food web characteristics of the river systems, as well as the lineages interspecific relationships and their generalized feeding strategies. Understanding the trophic dynamics of these lineages will assist in implementing effective conservation strategies and policies dealing with narrowly distributed species that are threatened by habitat fragmentation and invasion of piscivorous fish. , Thesis (MSc) -- Faculty of Science, Ichthyology and Fisheries Science, 2022
- Full Text:
- Date Issued: 2022-10-14
Trophic relationships of hake (Merluccius capensis Castelnau, 1851 and M. paradoxus Franca 1960) from the Northern Benguela current ecosystem (Namibia) : inferences from stable isotopes and fatty acids
- Authors: Iitembu, Johannes Angala
- Date: 2014
- Subjects: Hake -- Benguela Current , Merlucciidae -- Benguela Current , Multitrophic interactions (Ecology) , Food chains (Ecology) , Biotic communities -- Benguela Current , Merlucciidae -- Food , Fishery management -- Namibia , Stable isotopes , Fatty acids
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:5944 , http://hdl.handle.net/10962/d1020296
- Description: Two species of hake (Merluccius capensis and Merluccius paradoxus) account for most of Namibia’s fisheries catch, and they are important secondary consumers in the Benguela Current ecosystem. Inferences on their trophic relationships have been based mainly on stomach content analyses. However, such data are limited temporally because they represent only snapshots of recent feeding, and are quantitatively biased because of variation in the digestion rates of different prey. The principal aim of the thesis was to understand the trophic relationships of two hake species relative to each other, their known prey and top predators (demersal sharks) in the northern Benguela Current ecosystem (Namibia), using time-integrating trophic biomarkers. By using stable isotope (carbon and nitrogen) and fatty acid signatures of their muscle tissues, my overall objectives were to produce new knowledge about 1) hake ontogenic trophic relationships, 2) the contributions of different prey to hake diets, 3) hake dietary differences, and 4) some aspects of hake’s trophic relationships with demersal sharks. Tissues of hake (n=358), their potential prey (n=455), and demersal sharks (n=42) were collected between 2008 and 2012 during demersal bottom trawl surveys off Namibia, for stable isotope and fatty acid analyses. And more...
- Full Text:
- Date Issued: 2014
- Authors: Iitembu, Johannes Angala
- Date: 2014
- Subjects: Hake -- Benguela Current , Merlucciidae -- Benguela Current , Multitrophic interactions (Ecology) , Food chains (Ecology) , Biotic communities -- Benguela Current , Merlucciidae -- Food , Fishery management -- Namibia , Stable isotopes , Fatty acids
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:5944 , http://hdl.handle.net/10962/d1020296
- Description: Two species of hake (Merluccius capensis and Merluccius paradoxus) account for most of Namibia’s fisheries catch, and they are important secondary consumers in the Benguela Current ecosystem. Inferences on their trophic relationships have been based mainly on stomach content analyses. However, such data are limited temporally because they represent only snapshots of recent feeding, and are quantitatively biased because of variation in the digestion rates of different prey. The principal aim of the thesis was to understand the trophic relationships of two hake species relative to each other, their known prey and top predators (demersal sharks) in the northern Benguela Current ecosystem (Namibia), using time-integrating trophic biomarkers. By using stable isotope (carbon and nitrogen) and fatty acid signatures of their muscle tissues, my overall objectives were to produce new knowledge about 1) hake ontogenic trophic relationships, 2) the contributions of different prey to hake diets, 3) hake dietary differences, and 4) some aspects of hake’s trophic relationships with demersal sharks. Tissues of hake (n=358), their potential prey (n=455), and demersal sharks (n=42) were collected between 2008 and 2012 during demersal bottom trawl surveys off Namibia, for stable isotope and fatty acid analyses. And more...
- Full Text:
- Date Issued: 2014
Two-tissue stable isotope analysis to elucidate isotopic incorporation and trophic niche patterns for chubbyhead barb Enteromius anoplus
- Authors: Kambikambi, Manda Juliet
- Date: 2018
- Subjects: Food chains (Ecology) , Barbus -- South Africa -- Great Fish River Estuary , Stable isotopes , Freshwater fishes -- Feeding and feeds , Freshwater fishes -- Food , Fins (Anatomy) , Akaike Information Criterion , Freshwater fishes -- Conservation , Chubbyhead barb Enteromius anoplus
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/61906 , vital:28082
- Description: Knowledge of trophic ecology underpins conservation and management of threatened species. Stable isotope analysis has been widely used as a more objective approach for elucidating the trophic positions of freshwater fishes. Until recently, stable isotope analysis for trophic ecology studies in freshwater fishes largely utilised white muscle tissue. This sampling approach, however, involves either euthanasia or muscle biopsy procedures that may be inappropriate for small-sized and endangered fishes. These concerns raised the need to explore and validate the utility of non-lethal alternatives such as fin clips, mucus and scales. The present study investigated the use of caudal fin tissue as a potential non-lethal alternative to muscle tissue for trophic studies on the chubbyhead barb Enteromius anoplus. The chubbyhead barb was selected as a model taxon for the present study because it is closely related or comparable in body size to a number of highly threatened small-bodied minnows in southern Africa. The chubbyhead barb was also considered an ideal species for this study because it is widespread, abundant and classified as Least Concern on the IUCN list of threatened species. The study used a two-pronged approach based on laboratory and field experiments. A laboratory experiment was conducted to quantify isotopic turnover rates and diet-tissue discrimination factors (DTDFs/A) for both muscle and fin tissues. This involved feeding chubbyhead barb two diets with distinct carbon (δ13C) and nitrogen (δ15N) values, and monitoring the temporal isotopic incorporation patterns into the two tissues. These patterns were assessed by applying least squares non-linear one- and two-compartment isotopic kinetics models. Model comparisons, based on Akaike information criterion (AIC), revealed that one- compartment models described isotopic incorporation patterns better than two-compartment models for both muscle and fin tissues. For δ13C, relatively short and comparable turnover rates were observed for muscle and fin tissues, which suggests that fin tissue could potentially provide similar inference as muscle tissue when assessing short term dietary patterns for chubbyhead barb. In contrast to δ13C, turnover rates for δ15N between muscle and fin tissue were different for both diets. Specifically, stable isotope incorporation turnover rate was faster in muscle tissue for animals that were fed on isotopically enriched diets compared to fin tissue. Conversely, stable isotope incorporation into fin tissue was faster in animals fed on isotopically depleted diets compared to muscle tissue. This suggests that knowledge of animal diet is critical when inferring fin tissue δ15N turnover rates, particularly when extrapolating both short and long term dietary patterns. Diet-tissue discrimination factors were influenced by diet type, with the fish fed on isotopically enriched diet having lower DTDFs than animals fed on isotopically depleted diets. This variation may be explained by the protein quality hypothesis, which suggests that the DTDFs of consumers will decrease as protein quality increases. When A13C and A15N values were averaged across diets in muscle and fin tissue, the values were 0.74‰ and 0.64‰, respectively, for A13C, and 5.53‰ and 5.83 ‰, respectively, for A15N. This appeared to be consistent with studies on other taxa for A13C (0-1 ‰), but for A15N (3-5 ‰) the results of this study were higher than those reported for other taxa. These results suggest that investigating appropriate DTDFs for both muscle and fin tissues is important in trophic ecology studies of these minnows. A field-based study was conducted to investigate temporal dynamics in food web patterns for chubbyhead barb in the wild within the headwaters of the Koonap River, a tributary of the Great Fish River, in the Eastern Cape, South Africa. This was achieved by collecting and comparing stable isotope data for chubbyhead barb and its potential food sources on a seasonal scale. There was a discernible difference in both the composition of carbon and nitrogen isotope values for basal food sources and macroinvertebrate communities, which suggests that this headwater stream was subject to temporal changes in food web dynamics. For chubbyhead barb, comparison of its isotopic niche sizes on a temporal scale based on both muscle and fin tissue showed differences across seasons. Furthermore, isotopic niche sizes inferred from fin tissue were larger than those inferred from muscle tissue during winter and spring, whereas during summer and autumn the isotopic niche sizes inferred from muscle and fin tissue were generally comparable. This suggests the likely influence of different metabolic and physiological processes that these two tissues undergo on a temporal scale. Therefore, difference in tissue type, and their associated metabolic pathways should be considered when using fin tissue as a substitute for muscle tissue on broad temporal scales. The results from this study indicated that caudal fin tissue has the potential to be a substitute for muscle in trophic studies of chubbyhead barb Enteromius anoplus, as well as other related small bodied endangered minnow species from South Africa.
- Full Text:
- Date Issued: 2018
- Authors: Kambikambi, Manda Juliet
- Date: 2018
- Subjects: Food chains (Ecology) , Barbus -- South Africa -- Great Fish River Estuary , Stable isotopes , Freshwater fishes -- Feeding and feeds , Freshwater fishes -- Food , Fins (Anatomy) , Akaike Information Criterion , Freshwater fishes -- Conservation , Chubbyhead barb Enteromius anoplus
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/61906 , vital:28082
- Description: Knowledge of trophic ecology underpins conservation and management of threatened species. Stable isotope analysis has been widely used as a more objective approach for elucidating the trophic positions of freshwater fishes. Until recently, stable isotope analysis for trophic ecology studies in freshwater fishes largely utilised white muscle tissue. This sampling approach, however, involves either euthanasia or muscle biopsy procedures that may be inappropriate for small-sized and endangered fishes. These concerns raised the need to explore and validate the utility of non-lethal alternatives such as fin clips, mucus and scales. The present study investigated the use of caudal fin tissue as a potential non-lethal alternative to muscle tissue for trophic studies on the chubbyhead barb Enteromius anoplus. The chubbyhead barb was selected as a model taxon for the present study because it is closely related or comparable in body size to a number of highly threatened small-bodied minnows in southern Africa. The chubbyhead barb was also considered an ideal species for this study because it is widespread, abundant and classified as Least Concern on the IUCN list of threatened species. The study used a two-pronged approach based on laboratory and field experiments. A laboratory experiment was conducted to quantify isotopic turnover rates and diet-tissue discrimination factors (DTDFs/A) for both muscle and fin tissues. This involved feeding chubbyhead barb two diets with distinct carbon (δ13C) and nitrogen (δ15N) values, and monitoring the temporal isotopic incorporation patterns into the two tissues. These patterns were assessed by applying least squares non-linear one- and two-compartment isotopic kinetics models. Model comparisons, based on Akaike information criterion (AIC), revealed that one- compartment models described isotopic incorporation patterns better than two-compartment models for both muscle and fin tissues. For δ13C, relatively short and comparable turnover rates were observed for muscle and fin tissues, which suggests that fin tissue could potentially provide similar inference as muscle tissue when assessing short term dietary patterns for chubbyhead barb. In contrast to δ13C, turnover rates for δ15N between muscle and fin tissue were different for both diets. Specifically, stable isotope incorporation turnover rate was faster in muscle tissue for animals that were fed on isotopically enriched diets compared to fin tissue. Conversely, stable isotope incorporation into fin tissue was faster in animals fed on isotopically depleted diets compared to muscle tissue. This suggests that knowledge of animal diet is critical when inferring fin tissue δ15N turnover rates, particularly when extrapolating both short and long term dietary patterns. Diet-tissue discrimination factors were influenced by diet type, with the fish fed on isotopically enriched diet having lower DTDFs than animals fed on isotopically depleted diets. This variation may be explained by the protein quality hypothesis, which suggests that the DTDFs of consumers will decrease as protein quality increases. When A13C and A15N values were averaged across diets in muscle and fin tissue, the values were 0.74‰ and 0.64‰, respectively, for A13C, and 5.53‰ and 5.83 ‰, respectively, for A15N. This appeared to be consistent with studies on other taxa for A13C (0-1 ‰), but for A15N (3-5 ‰) the results of this study were higher than those reported for other taxa. These results suggest that investigating appropriate DTDFs for both muscle and fin tissues is important in trophic ecology studies of these minnows. A field-based study was conducted to investigate temporal dynamics in food web patterns for chubbyhead barb in the wild within the headwaters of the Koonap River, a tributary of the Great Fish River, in the Eastern Cape, South Africa. This was achieved by collecting and comparing stable isotope data for chubbyhead barb and its potential food sources on a seasonal scale. There was a discernible difference in both the composition of carbon and nitrogen isotope values for basal food sources and macroinvertebrate communities, which suggests that this headwater stream was subject to temporal changes in food web dynamics. For chubbyhead barb, comparison of its isotopic niche sizes on a temporal scale based on both muscle and fin tissue showed differences across seasons. Furthermore, isotopic niche sizes inferred from fin tissue were larger than those inferred from muscle tissue during winter and spring, whereas during summer and autumn the isotopic niche sizes inferred from muscle and fin tissue were generally comparable. This suggests the likely influence of different metabolic and physiological processes that these two tissues undergo on a temporal scale. Therefore, difference in tissue type, and their associated metabolic pathways should be considered when using fin tissue as a substitute for muscle tissue on broad temporal scales. The results from this study indicated that caudal fin tissue has the potential to be a substitute for muscle in trophic studies of chubbyhead barb Enteromius anoplus, as well as other related small bodied endangered minnow species from South Africa.
- Full Text:
- Date Issued: 2018
- «
- ‹
- 1
- ›
- »