In vitro evaluation of antimicrobial and antioxidant activities of olea europaea subsp. africana and euryops brevipapposus used by Cala community folkloric medicine for the management of infections associated with chronic non-communicable diseases
- Authors: Adegborioye, Abiodun
- Date: 2016
- Subjects: Antioxidants , Medicinal plants , Traditional medicine -- South Africa -- Eastern Cape
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10353/4869 , vital:28624
- Description: Chronic non-communicable diseses are a global public health challenge that continuously threatens the development and health of humans. Risk factors such as unbalanced diet-the high consumption of processed food or food from animal origin are responsible for NCDs. NCDs result in weakened immune system, making the host susceptible to opportunistic infections. Thus, the NCDs burden is most times chronic and multiple with the illness and suffering of the affected person numerous. The lack of cure for NCDs, the high cost of drugs, their high side-effects, and the emergence of multiple drug resistance has given rise to the investigation of other sources for therapeutic cure such as medicinal plants. The ethanol, n-hexane and ethyl acetate extracts of Olea europaea were analysed for their antioxidant and antimicrobial activities. The essential oil was also analysed for their chemical constituents. The n-hexane extracts of O. europaea exhibited no inhibition against all of the microorganisms tested, while the ethyl acetate and ethanol extracts exhibited inhibition, with minimum inhibitory concentration values between 0.625 mg/ml to 1.25 mg/ml. The ethanol leaf and ethyl acetate stem extracts exhibited significant activity in the inhibition of 2, 2-azinobis-(3-ethylbenzothiazolin - 6-sulfonic acid diammonium salt (ABTS) free radical, the n-hexane leaf extract had the overall significant lipid peroxidation inhibition activity, while in the inhibition of 2, 2- diphenyl-1-picrylhydrazyl radical (DPPH), the ethanol and ethyl acetate leaf extracts had strong activity. Nonanal, phytol, α-Pinene, α-Phellandrene, spatulenol and farnesol were some of chemical components identified after the GC-MS analysis of O. europaea oil. In the final part of the dissertation, Euryops brevipapposus essential oil was assessed for the antioxidant activities using free radical scavenging assays. In addition to this, the antimicrobial activities were assessed and the chemical composition was analysed using GC-MS. The essential oil demonstrated significant antioxidant activity against 2, 2-diphenyl-2-picryl-hydrazyl free radical (DPPH), 2, 2′-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) and lipid peroxides with IC50 value of 0.0000000671 mg/ml, 1.05 mg/ml, and 1.170 mg/ml respectively. The essential oil also showed significant activity against all microorganisms tested with minimum inhibitory concentration (MIC) values between 0.055 mg/ml to 0.5 mg/ml. α-pinene, α- Phellandrene, germacrene D, β-pinene, trans- β.-Ocimene, bicyclogermacrene and β -Phellandrene were some of the chemical compounds identified in E. brevipapposus oil. The study has shown that E. brevipapposus and O. europaea are abundant in phytochemical compounds which were thought to be the root cause for the activities demonstrated. Therefore, these therapeutic properties observed validate and elucidate the traditional usage of the both plants in the treatment /management of diseases.
- Full Text:
- Date Issued: 2016
- Authors: Adegborioye, Abiodun
- Date: 2016
- Subjects: Antioxidants , Medicinal plants , Traditional medicine -- South Africa -- Eastern Cape
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10353/4869 , vital:28624
- Description: Chronic non-communicable diseses are a global public health challenge that continuously threatens the development and health of humans. Risk factors such as unbalanced diet-the high consumption of processed food or food from animal origin are responsible for NCDs. NCDs result in weakened immune system, making the host susceptible to opportunistic infections. Thus, the NCDs burden is most times chronic and multiple with the illness and suffering of the affected person numerous. The lack of cure for NCDs, the high cost of drugs, their high side-effects, and the emergence of multiple drug resistance has given rise to the investigation of other sources for therapeutic cure such as medicinal plants. The ethanol, n-hexane and ethyl acetate extracts of Olea europaea were analysed for their antioxidant and antimicrobial activities. The essential oil was also analysed for their chemical constituents. The n-hexane extracts of O. europaea exhibited no inhibition against all of the microorganisms tested, while the ethyl acetate and ethanol extracts exhibited inhibition, with minimum inhibitory concentration values between 0.625 mg/ml to 1.25 mg/ml. The ethanol leaf and ethyl acetate stem extracts exhibited significant activity in the inhibition of 2, 2-azinobis-(3-ethylbenzothiazolin - 6-sulfonic acid diammonium salt (ABTS) free radical, the n-hexane leaf extract had the overall significant lipid peroxidation inhibition activity, while in the inhibition of 2, 2- diphenyl-1-picrylhydrazyl radical (DPPH), the ethanol and ethyl acetate leaf extracts had strong activity. Nonanal, phytol, α-Pinene, α-Phellandrene, spatulenol and farnesol were some of chemical components identified after the GC-MS analysis of O. europaea oil. In the final part of the dissertation, Euryops brevipapposus essential oil was assessed for the antioxidant activities using free radical scavenging assays. In addition to this, the antimicrobial activities were assessed and the chemical composition was analysed using GC-MS. The essential oil demonstrated significant antioxidant activity against 2, 2-diphenyl-2-picryl-hydrazyl free radical (DPPH), 2, 2′-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) and lipid peroxides with IC50 value of 0.0000000671 mg/ml, 1.05 mg/ml, and 1.170 mg/ml respectively. The essential oil also showed significant activity against all microorganisms tested with minimum inhibitory concentration (MIC) values between 0.055 mg/ml to 0.5 mg/ml. α-pinene, α- Phellandrene, germacrene D, β-pinene, trans- β.-Ocimene, bicyclogermacrene and β -Phellandrene were some of the chemical compounds identified in E. brevipapposus oil. The study has shown that E. brevipapposus and O. europaea are abundant in phytochemical compounds which were thought to be the root cause for the activities demonstrated. Therefore, these therapeutic properties observed validate and elucidate the traditional usage of the both plants in the treatment /management of diseases.
- Full Text:
- Date Issued: 2016
Chemical analysis and biological activities of crude extracts and essential oil of selected medicinal plants from the Eastern Cape, South Africa, and Volta Region of Ghana
- Authors: Agbo, Irene Adzo
- Date: 2023-12
- Subjects: Medicinal plants , Lantana camara , Peptic ulcer -- Treatment , Traditional medicine - South Africa -- Eastern Cape , Traditional medicine -- Ghana
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10948/62431 , vital:72728
- Description: Lantana camara and Khaya grandifoliola extracts are among many plants found traditionally effective for the treatment of wounds and ulcers. This study assessed the phytochemical content, isolation and identification of single compounds from methanol and ethyl acetate extracts of Lantana camara and Khaya grandifoliola. Further, the bioactivity testing including antioxidant, antimicrobial and cytoxicity of the extracts was done to confirm the wound healing potential discovered by the traditional healers. Materials and methods: Extraction was done successively using maceration method with 100 % ethyl acetate and 100 % methanol with a biomass-to-solvent ratio of 1:3 (w/v) to obtain L. camara ethyl acetate extracts of berry (ELB), flower (ELF) and leaf (ELL) and methanol extracts of MLB, MLF, MLL and K. grandifoliola ethyl acetate extracts of leaf (EKL), root (EKR) and stem bark (EKSB) and methanol extracts of MKL, MKR, MKSB respectively. L. camara leaf essential oil (EO) was extracted using the hydro-distillation method with a Clevenger apparatus. Total phytochemical content was assessed for each extract using spectrophotometric methods and a calibration curve of standards: bromocresol green method with atropine; Folin–Ciocalteu colorimetric method with gallic acid, aluminium chloride colorimetric method with quercetin and concentrated sulphuric acid chloroform with linalool for total alkaloid, phenolic, flavonoid and terpenoid contents respectively. Single compound isolation and purification was conducted using chromatographic techniques. Elucidation of single compounds was done using spectrometric method, high resolution- mass spectrometry, and one and two-dimensional (1D and 2D)-NMR. Stereochemistry of each compound was confirmed using electronic circular dichroism spectra. A Crystalline compound was identified by single crystal X-ray diffraction using CuKα-radiation. In vitro bioactivities were assessed with methods such as 3-[4,5-dimethylthiazole-2-yl]-2,5-diphenyltetrazolium bromide, free radical scavenging activity of 1,1-diphenyl-2-picrylhydrazyl, inhibitory effect on nitric oxide production in lipopolysaccharide-activated RAW 264.7 macrophages, and 96-well plate micro dilution for cytotoxicity, ant-inflammatory and antimicrobial activity testing. Results: Methanol extracts of both plants retained high phytochemical concentrations of all the phytoconstituents investigated compared with the ethyl acetate extracts which retained lower concentrations. The results of the L. camara methanol extracts include; total alkaloid content (TAC) (2.05±0.18, 1.87±1.54 and 2.60±1.10 mg AEQ/100 mg); total phenolic content (TPC) (14.05±4.04, 34.59±3.01 and 18.58±1.87 mg GAEQ/100 mg); the total flavonoid content(TFC) of flower (12.45±1.87, 20.41±2.69 and mg QEQ/100 mg); total terpenoids (TTC) (20.74±2.34, 20.74±2.34 and 15.97±1.19 mg LIN EQ/100mg) of MLB, MLF and MLL respectively. Whereas that of the K. grandifoliola methanol extracts include; TAC (7.32±0.14,8.49±0.34, 10.67±0.22 mg AEQ/100 mg); TPC (37.49±1.40, 44.41±0.69, 53.57±1.50 mgGAEQ/100 mg); TFC (6.54±0.55, 9.58±0.89 and 10.26±0.92 mg QEQ/100 mg); TTC(10.16±1.41, 35.78±2.14 and 23.45±1.76 mg LIN EQ/100mg) of MKL, MKR and MKSB respectively. The major components of essential oil, out of the 71 constituents identified include Davanone D (32.91 %), Caryophyllene (5.07 %), Nerolidol 2 (3.56 %) and GermacreneD (3.13 %). Compounds 3.47 was isolated from the methanol extract of L. camara flowers. This compound is reported for the first time from the L. camara flower extract. Two compounds, compounds 4.23, and 4.26, were isolated from the methanol extract of K. grandifoliola roots, compound 4.22 was isolated from the ethyl acetate root extract while compounds 4.24 and 4.25 were isolated from the ethyl acetate stem bark extract as isomers in a mixture. Compounds 4.22 and 4.23 are reported from K. grandifoliola root for the first time. The isolated compounds (compounds 3.47 and 4.23) were nontoxic to the Vero cell line and this may contribute to possible stimulation of cell proliferation, promoting wound healing. Cytotoxicity describes extract virulence to Vero cell line. MLF and ELB were found nontoxic even at the highest concentration of 200 μg/mL. The MKSB and MKR, as well as the EKSB were nontoxic. Antioxidant activity results, described by the percentage inhibition in the DPPH assay, showed that MLF and MKSB had the highest antioxidant activities compared with the ascorbic acid standard, with IC50 of 38.68±5.09 and 37.03±11.95 μg/mL for L. camara and K. grandifoliola respectively. ELB exhibited a significant anti-inflammatory activity inhibiting NO• radical generation in the LPS-stimulated RAW 264.7 macrophages at concentration ranging from 50 and 100 μg/mL. EKSB and MKR showed significant anti-inflammatory activity at 100 and 200 μg/ml respectively. ELL and ELF demonstrated potent growth inhibition against S. pyogenes with an MIC value ≤ 0.125 mg/mL, while the MICs of the ELB and MLL were 0.5 mg/mL and 2 mg/mL respectively. MKSB and MKR and EKSB extract exhibited an effective growth inhibition against S. aureus with MIC of 1 mg/mL. The growth of S. pyogenes was supressed by both ethyl acetate and methanol extracts of all plant parts tested with MIC ranging from 0.25–2 mg/mL. Conclusion: The potent bioactivity shown in the results of the cytotoxicity, antioxidant activity, anti-inflammatory and antimicrobial activity testing, and the nontoxic singlecompounds of L. camara and K. grandifoliola extracts led to the conclusion that the two plants had wound healing potential. The study therefore confirmed their traditional uses for treatment of wounds. , Thesis (PhD) -- Faculty of Science, School of Biomolecular and Chemical Sciences, 2023
- Full Text:
- Date Issued: 2023-12
- Authors: Agbo, Irene Adzo
- Date: 2023-12
- Subjects: Medicinal plants , Lantana camara , Peptic ulcer -- Treatment , Traditional medicine - South Africa -- Eastern Cape , Traditional medicine -- Ghana
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10948/62431 , vital:72728
- Description: Lantana camara and Khaya grandifoliola extracts are among many plants found traditionally effective for the treatment of wounds and ulcers. This study assessed the phytochemical content, isolation and identification of single compounds from methanol and ethyl acetate extracts of Lantana camara and Khaya grandifoliola. Further, the bioactivity testing including antioxidant, antimicrobial and cytoxicity of the extracts was done to confirm the wound healing potential discovered by the traditional healers. Materials and methods: Extraction was done successively using maceration method with 100 % ethyl acetate and 100 % methanol with a biomass-to-solvent ratio of 1:3 (w/v) to obtain L. camara ethyl acetate extracts of berry (ELB), flower (ELF) and leaf (ELL) and methanol extracts of MLB, MLF, MLL and K. grandifoliola ethyl acetate extracts of leaf (EKL), root (EKR) and stem bark (EKSB) and methanol extracts of MKL, MKR, MKSB respectively. L. camara leaf essential oil (EO) was extracted using the hydro-distillation method with a Clevenger apparatus. Total phytochemical content was assessed for each extract using spectrophotometric methods and a calibration curve of standards: bromocresol green method with atropine; Folin–Ciocalteu colorimetric method with gallic acid, aluminium chloride colorimetric method with quercetin and concentrated sulphuric acid chloroform with linalool for total alkaloid, phenolic, flavonoid and terpenoid contents respectively. Single compound isolation and purification was conducted using chromatographic techniques. Elucidation of single compounds was done using spectrometric method, high resolution- mass spectrometry, and one and two-dimensional (1D and 2D)-NMR. Stereochemistry of each compound was confirmed using electronic circular dichroism spectra. A Crystalline compound was identified by single crystal X-ray diffraction using CuKα-radiation. In vitro bioactivities were assessed with methods such as 3-[4,5-dimethylthiazole-2-yl]-2,5-diphenyltetrazolium bromide, free radical scavenging activity of 1,1-diphenyl-2-picrylhydrazyl, inhibitory effect on nitric oxide production in lipopolysaccharide-activated RAW 264.7 macrophages, and 96-well plate micro dilution for cytotoxicity, ant-inflammatory and antimicrobial activity testing. Results: Methanol extracts of both plants retained high phytochemical concentrations of all the phytoconstituents investigated compared with the ethyl acetate extracts which retained lower concentrations. The results of the L. camara methanol extracts include; total alkaloid content (TAC) (2.05±0.18, 1.87±1.54 and 2.60±1.10 mg AEQ/100 mg); total phenolic content (TPC) (14.05±4.04, 34.59±3.01 and 18.58±1.87 mg GAEQ/100 mg); the total flavonoid content(TFC) of flower (12.45±1.87, 20.41±2.69 and mg QEQ/100 mg); total terpenoids (TTC) (20.74±2.34, 20.74±2.34 and 15.97±1.19 mg LIN EQ/100mg) of MLB, MLF and MLL respectively. Whereas that of the K. grandifoliola methanol extracts include; TAC (7.32±0.14,8.49±0.34, 10.67±0.22 mg AEQ/100 mg); TPC (37.49±1.40, 44.41±0.69, 53.57±1.50 mgGAEQ/100 mg); TFC (6.54±0.55, 9.58±0.89 and 10.26±0.92 mg QEQ/100 mg); TTC(10.16±1.41, 35.78±2.14 and 23.45±1.76 mg LIN EQ/100mg) of MKL, MKR and MKSB respectively. The major components of essential oil, out of the 71 constituents identified include Davanone D (32.91 %), Caryophyllene (5.07 %), Nerolidol 2 (3.56 %) and GermacreneD (3.13 %). Compounds 3.47 was isolated from the methanol extract of L. camara flowers. This compound is reported for the first time from the L. camara flower extract. Two compounds, compounds 4.23, and 4.26, were isolated from the methanol extract of K. grandifoliola roots, compound 4.22 was isolated from the ethyl acetate root extract while compounds 4.24 and 4.25 were isolated from the ethyl acetate stem bark extract as isomers in a mixture. Compounds 4.22 and 4.23 are reported from K. grandifoliola root for the first time. The isolated compounds (compounds 3.47 and 4.23) were nontoxic to the Vero cell line and this may contribute to possible stimulation of cell proliferation, promoting wound healing. Cytotoxicity describes extract virulence to Vero cell line. MLF and ELB were found nontoxic even at the highest concentration of 200 μg/mL. The MKSB and MKR, as well as the EKSB were nontoxic. Antioxidant activity results, described by the percentage inhibition in the DPPH assay, showed that MLF and MKSB had the highest antioxidant activities compared with the ascorbic acid standard, with IC50 of 38.68±5.09 and 37.03±11.95 μg/mL for L. camara and K. grandifoliola respectively. ELB exhibited a significant anti-inflammatory activity inhibiting NO• radical generation in the LPS-stimulated RAW 264.7 macrophages at concentration ranging from 50 and 100 μg/mL. EKSB and MKR showed significant anti-inflammatory activity at 100 and 200 μg/ml respectively. ELL and ELF demonstrated potent growth inhibition against S. pyogenes with an MIC value ≤ 0.125 mg/mL, while the MICs of the ELB and MLL were 0.5 mg/mL and 2 mg/mL respectively. MKSB and MKR and EKSB extract exhibited an effective growth inhibition against S. aureus with MIC of 1 mg/mL. The growth of S. pyogenes was supressed by both ethyl acetate and methanol extracts of all plant parts tested with MIC ranging from 0.25–2 mg/mL. Conclusion: The potent bioactivity shown in the results of the cytotoxicity, antioxidant activity, anti-inflammatory and antimicrobial activity testing, and the nontoxic singlecompounds of L. camara and K. grandifoliola extracts led to the conclusion that the two plants had wound healing potential. The study therefore confirmed their traditional uses for treatment of wounds. , Thesis (PhD) -- Faculty of Science, School of Biomolecular and Chemical Sciences, 2023
- Full Text:
- Date Issued: 2023-12
Pharmacological, toxicological and phytochemical evaluation of helichrysum petiolare hilliard & b.l. burtt - an indigenous plant traditionally used in the treatment of diabetes in the eastern cape province of South Africa
- Aladejana, Adebowale Emmanuel https://orcid.org/0000-0003-1871-926X
- Authors: Aladejana, Adebowale Emmanuel https://orcid.org/0000-0003-1871-926X
- Date: 2022-04
- Subjects: Diabetes -- Alternative treatment , Traditional medicine , Medicinal plants
- Language: English
- Type: Doctoral theses , text
- Identifier: http://hdl.handle.net/10353/22787 , vital:52755
- Description: Diabetes mellitus is one of the leading causes of death in South Africa, and it has already placed significant stress on the country’s health sector and economy. The orthodox hypoglycaemic drugs are not only ineffective in the management of the disease and its complications, but they also possess unwanted side effects. The need for alternative non-toxic drugs is therefore imperative. Various studies have listed several medicinal plants that can be successfully used in the herbal treatment of diabetes and have investigated them for their anti-diabetic potentials in vivo and/or in vitro. Out of the different potential herbal species, plants belonging to the Asteraceae family possess highly potent hypoglycaemic properties with negligible toxicities. Five Asteraceae plants widely used in different parts of South Africa for the treatment of diabetes were reviewed. The review provided an update of scientific evidence on the hypoglycaemic properties of the plants. However, Helichrysum petiolare was studied extensively in this study for its antidiabetic activity H. petiolare has been listed in many ethnobotanical surveys as a plant with potent hypoglycaemic potential, this, however, has not been properly verified in scientific literature and there has hardly been any study on the essential oil and nutritional composition, and antioxidant, antidiabetic, and cytotoxicity potentials of the plant. The effects of hydro-distillation (HD) and solvent-free microwave extraction (SFME) methods on the chemical constituents of H. petiolare-derived essential oils were evaluated. The SFME method had a higher yield of essential oil than the HD. There were substantial amounts of monoterpenes, monoterpene alcohols, sesquiterpenes, and sesquiterpene alcohols in both essential oils obtained, but these compounds were more profound in the SFME derived essential oil which has 62 compounds compared to the 52 derived through HD. The SFME derived essential oil can therefore be said to be of better quality than the HD method. The compounds obtained in the essential oils have high pharmaceutical and cosmetic value, and as observed in this study, their quantity is dependent on the method of extraction (Ibáñez and Blázquez, 2021; Kaur et al., 2021). The proximate analysis of the whole plant of H. petiolare showed high levels of Acid Detergent Fibre (ADF), vitamins (A, C and E), Neutral Detergent Fibre (NDF), and minerals. The high ADF level is believed to be responsible for the low energy, fat and carbohydrate levels observed in the study. The result showed a high level of oxalate and therefore suggests cooking of the plant before human consumption. Overall nutrition and mineral compositions of the plant showed that H. petiolare is immensely rich in vital nutrients that are of great importance to health and metabolism; these nutrients are suggested to be partly responsible for the plant’s useful medicinal properties. The phytochemical contents of the acetone (ACQ), ethanol (ETQ), and boiled (BAQ) and cold (CAQ) aqueous whole-plant extracts of Helichrysum petiolare were determined using standard phytochemical reaction methods. ABTS, DPPH, NO and TAC assays were used to evaluate their antioxidant properties. The highest total phenolic content (212,963 mg/g) was reported in the BAQ extract, while the ETQ had the highest flavonoid (172.393 mg/g) and proanthocyanidin contents (65.855 mg/g). Alkaloids, flavonols, and saponin were highest in the ACQ extract, while the CAQ had the lowest phytochemical content. Among the extracts, the BAQ had the highest DPPH•+ (IC50 0.02 mg/mL) and ABTS•+ (IC50 0.07) inhibition capacities, while the ETQ exhibited the highest NO• Inhibition (IC50 0.41 mg/mL) and TAC (IC50 0.19 mg/mL). These findings justify the use of H. petiolare in traditional medicine and further recommend the ETQ and BAQ extracts of the plant as more effective extracts for medicinal treatment. The hepatotoxicity (cytotoxicity, mitotoxicity and lipotoxicity) potential of the BAQ, CAQ and ETQ extracts of Helichrysum petiolare was evaluated using standard procedures. The results showed negligible BAQ and CAQ cytotoxicities, which were further, corroborated by stability in the mitochondrial membrane potentials and were congruent with the CAQ and BAQ results for steatosis and phospholipidosis. The data suggested favourable CAQ and BAQ toxicity profiles with limited risks for hepatotoxicity. The ETQ extract, however, showed significantly high levels of cytotoxicity and lipotoxicity, and a low level of mitotoxicity. Our result suggested a potential risk of the ETQ extract for hepatotoxicity but appears partly independent of direct mitochondrial involvement. Glucose uptake assay showed significantly increased glucose uptake in the BAQ and CAQ treated L6 and C3A cell lines. The CAQ extract enhanced glucose uptake more in the L6 myocytes than in the C3A cell-lines hepatocytes. The BAQ extract showed higher levels of inhibition on α–amylase and α-glucosidase activities as compared to CAQ. The BAQ and CAQ extracts of H. petiolare may, therefore, contain pharmacologically active and relatively non-toxic hypoglycaemic chemicals, which may be effective substitutes in the treatment of diabetes mellitus. This study provides up to date scientific information on the use of H. petiolare in the treatment of diabetes mellitus in the Eastern Cape of South Africa. It justifies the use of this plant in herbal medicine and sheds more light on its previously vaguely understood nutritional and medicinal potentials. More studies, however, need to be done to isolate, identify and purify the constituent bioactive compound(s). Their dosage of application and mode of action also needs to be understood. , Thesis (PhD) -- Faculty of Science and Agriculture, 2022
- Full Text:
- Date Issued: 2022-04
- Authors: Aladejana, Adebowale Emmanuel https://orcid.org/0000-0003-1871-926X
- Date: 2022-04
- Subjects: Diabetes -- Alternative treatment , Traditional medicine , Medicinal plants
- Language: English
- Type: Doctoral theses , text
- Identifier: http://hdl.handle.net/10353/22787 , vital:52755
- Description: Diabetes mellitus is one of the leading causes of death in South Africa, and it has already placed significant stress on the country’s health sector and economy. The orthodox hypoglycaemic drugs are not only ineffective in the management of the disease and its complications, but they also possess unwanted side effects. The need for alternative non-toxic drugs is therefore imperative. Various studies have listed several medicinal plants that can be successfully used in the herbal treatment of diabetes and have investigated them for their anti-diabetic potentials in vivo and/or in vitro. Out of the different potential herbal species, plants belonging to the Asteraceae family possess highly potent hypoglycaemic properties with negligible toxicities. Five Asteraceae plants widely used in different parts of South Africa for the treatment of diabetes were reviewed. The review provided an update of scientific evidence on the hypoglycaemic properties of the plants. However, Helichrysum petiolare was studied extensively in this study for its antidiabetic activity H. petiolare has been listed in many ethnobotanical surveys as a plant with potent hypoglycaemic potential, this, however, has not been properly verified in scientific literature and there has hardly been any study on the essential oil and nutritional composition, and antioxidant, antidiabetic, and cytotoxicity potentials of the plant. The effects of hydro-distillation (HD) and solvent-free microwave extraction (SFME) methods on the chemical constituents of H. petiolare-derived essential oils were evaluated. The SFME method had a higher yield of essential oil than the HD. There were substantial amounts of monoterpenes, monoterpene alcohols, sesquiterpenes, and sesquiterpene alcohols in both essential oils obtained, but these compounds were more profound in the SFME derived essential oil which has 62 compounds compared to the 52 derived through HD. The SFME derived essential oil can therefore be said to be of better quality than the HD method. The compounds obtained in the essential oils have high pharmaceutical and cosmetic value, and as observed in this study, their quantity is dependent on the method of extraction (Ibáñez and Blázquez, 2021; Kaur et al., 2021). The proximate analysis of the whole plant of H. petiolare showed high levels of Acid Detergent Fibre (ADF), vitamins (A, C and E), Neutral Detergent Fibre (NDF), and minerals. The high ADF level is believed to be responsible for the low energy, fat and carbohydrate levels observed in the study. The result showed a high level of oxalate and therefore suggests cooking of the plant before human consumption. Overall nutrition and mineral compositions of the plant showed that H. petiolare is immensely rich in vital nutrients that are of great importance to health and metabolism; these nutrients are suggested to be partly responsible for the plant’s useful medicinal properties. The phytochemical contents of the acetone (ACQ), ethanol (ETQ), and boiled (BAQ) and cold (CAQ) aqueous whole-plant extracts of Helichrysum petiolare were determined using standard phytochemical reaction methods. ABTS, DPPH, NO and TAC assays were used to evaluate their antioxidant properties. The highest total phenolic content (212,963 mg/g) was reported in the BAQ extract, while the ETQ had the highest flavonoid (172.393 mg/g) and proanthocyanidin contents (65.855 mg/g). Alkaloids, flavonols, and saponin were highest in the ACQ extract, while the CAQ had the lowest phytochemical content. Among the extracts, the BAQ had the highest DPPH•+ (IC50 0.02 mg/mL) and ABTS•+ (IC50 0.07) inhibition capacities, while the ETQ exhibited the highest NO• Inhibition (IC50 0.41 mg/mL) and TAC (IC50 0.19 mg/mL). These findings justify the use of H. petiolare in traditional medicine and further recommend the ETQ and BAQ extracts of the plant as more effective extracts for medicinal treatment. The hepatotoxicity (cytotoxicity, mitotoxicity and lipotoxicity) potential of the BAQ, CAQ and ETQ extracts of Helichrysum petiolare was evaluated using standard procedures. The results showed negligible BAQ and CAQ cytotoxicities, which were further, corroborated by stability in the mitochondrial membrane potentials and were congruent with the CAQ and BAQ results for steatosis and phospholipidosis. The data suggested favourable CAQ and BAQ toxicity profiles with limited risks for hepatotoxicity. The ETQ extract, however, showed significantly high levels of cytotoxicity and lipotoxicity, and a low level of mitotoxicity. Our result suggested a potential risk of the ETQ extract for hepatotoxicity but appears partly independent of direct mitochondrial involvement. Glucose uptake assay showed significantly increased glucose uptake in the BAQ and CAQ treated L6 and C3A cell lines. The CAQ extract enhanced glucose uptake more in the L6 myocytes than in the C3A cell-lines hepatocytes. The BAQ extract showed higher levels of inhibition on α–amylase and α-glucosidase activities as compared to CAQ. The BAQ and CAQ extracts of H. petiolare may, therefore, contain pharmacologically active and relatively non-toxic hypoglycaemic chemicals, which may be effective substitutes in the treatment of diabetes mellitus. This study provides up to date scientific information on the use of H. petiolare in the treatment of diabetes mellitus in the Eastern Cape of South Africa. It justifies the use of this plant in herbal medicine and sheds more light on its previously vaguely understood nutritional and medicinal potentials. More studies, however, need to be done to isolate, identify and purify the constituent bioactive compound(s). Their dosage of application and mode of action also needs to be understood. , Thesis (PhD) -- Faculty of Science and Agriculture, 2022
- Full Text:
- Date Issued: 2022-04
In vitro cytotoxic effects of selected Nigerian medicinal plant extracts on cancer cell lines
- Authors: Baatjies, Lucinda
- Date: 2012
- Subjects: Cancer -- Treatment , Cancer cells , Medicinal plants , Plant extracts , Traditional medicine , Public health
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:10316 , http://hdl.handle.net/10948/d1008191 , Cancer -- Treatment , Cancer cells , Medicinal plants , Plant extracts , Traditional medicine , Public health
- Description: Cancer is a disease that imposes a heavy burden on public health and poses a challenge to science. The World Health Organization estimates that 80 percent of people in developing countries of the world rely on traditional medicine for their primary health needs, and about 85 percent of traditional medicine involves the use of plant extracts. This is particularly true in Africa where a large percentage of the population depends upon medicinal plants for health care. Therefore, detailed screening and evaluation of bioactive substances for chemotherapeutic purposes of African plants are urgently warranted. Furthermore, this will serve to validate the efficacy and safety of African traditional medicine. The current study investigated the in vitro cytotoxic effects of 17 ethanolic extracts of the following 16 plants used in traditional anticancer medicine in Nigeria: Sapium ellipticum leaves, Sapium ellipticum stembark, Combretum paniculatum, Celosia trigyna, Pupalia lappacea, Justica extensa, Hedranthera barteri leaves, Alternanthera sessilis, Ethulia conyzoides leaves, Lannea nigritana stembark, Combretum zenkeri root, Combretum molle leaves, Adenanthera parvoniana, Lannea acida, Cyathula achyranthoides, Drymaria cordata, Cyathula prostrata, against HeLa cancer cells. Five of the most promising extracts (Sapium ellipticum leaves, Combretum paniculatum, Celosia trigyna, Drymaria cordata, Cyathula prostrata) were selected for further screening against HT29 and MCF-7 cancer cells. Of the five, the first two were investigated further based on their activities in the screening phase. The S. ellipticum leaf extract yielded IC50 values of 88.60 ± 0.03 and 93.03 ± 0.03 μg/ml against HeLa and MCF-7, respectively. The toxicity was also evaluated on normal cells and an IC50 of 77.66 μg/ml was obtained for peripheral blood mononuclear cells (PBMCs). The IC50 values for proliferating and confluent Chang liver cells were both >125 μg/ml. These results suggest that the extract may be selective for specific cell types. Bio-assay guided fractionation of the S. ellipticum ethanolic extract yielded two active fractions; chloroform and ethyl acetate. Two compounds isolated from the chloroform extract were screened against the three cancer cell lines and found to be inactive. Three compounds were isolated from the ethyl acetate fraction and revealed IC50 values < 62.5 and < 31 μg/ml against MCF-7. Unfortunately these two compounds soon lost activity before any further work could be done on them and work was continued with the crude extract.
- Full Text:
- Date Issued: 2012
- Authors: Baatjies, Lucinda
- Date: 2012
- Subjects: Cancer -- Treatment , Cancer cells , Medicinal plants , Plant extracts , Traditional medicine , Public health
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:10316 , http://hdl.handle.net/10948/d1008191 , Cancer -- Treatment , Cancer cells , Medicinal plants , Plant extracts , Traditional medicine , Public health
- Description: Cancer is a disease that imposes a heavy burden on public health and poses a challenge to science. The World Health Organization estimates that 80 percent of people in developing countries of the world rely on traditional medicine for their primary health needs, and about 85 percent of traditional medicine involves the use of plant extracts. This is particularly true in Africa where a large percentage of the population depends upon medicinal plants for health care. Therefore, detailed screening and evaluation of bioactive substances for chemotherapeutic purposes of African plants are urgently warranted. Furthermore, this will serve to validate the efficacy and safety of African traditional medicine. The current study investigated the in vitro cytotoxic effects of 17 ethanolic extracts of the following 16 plants used in traditional anticancer medicine in Nigeria: Sapium ellipticum leaves, Sapium ellipticum stembark, Combretum paniculatum, Celosia trigyna, Pupalia lappacea, Justica extensa, Hedranthera barteri leaves, Alternanthera sessilis, Ethulia conyzoides leaves, Lannea nigritana stembark, Combretum zenkeri root, Combretum molle leaves, Adenanthera parvoniana, Lannea acida, Cyathula achyranthoides, Drymaria cordata, Cyathula prostrata, against HeLa cancer cells. Five of the most promising extracts (Sapium ellipticum leaves, Combretum paniculatum, Celosia trigyna, Drymaria cordata, Cyathula prostrata) were selected for further screening against HT29 and MCF-7 cancer cells. Of the five, the first two were investigated further based on their activities in the screening phase. The S. ellipticum leaf extract yielded IC50 values of 88.60 ± 0.03 and 93.03 ± 0.03 μg/ml against HeLa and MCF-7, respectively. The toxicity was also evaluated on normal cells and an IC50 of 77.66 μg/ml was obtained for peripheral blood mononuclear cells (PBMCs). The IC50 values for proliferating and confluent Chang liver cells were both >125 μg/ml. These results suggest that the extract may be selective for specific cell types. Bio-assay guided fractionation of the S. ellipticum ethanolic extract yielded two active fractions; chloroform and ethyl acetate. Two compounds isolated from the chloroform extract were screened against the three cancer cell lines and found to be inactive. Three compounds were isolated from the ethyl acetate fraction and revealed IC50 values < 62.5 and < 31 μg/ml against MCF-7. Unfortunately these two compounds soon lost activity before any further work could be done on them and work was continued with the crude extract.
- Full Text:
- Date Issued: 2012
The antifungal activity of an aqueous Tulbaghia violacea plant extract against Aspergillus flavus
- Authors: Belewa, Xoliswa Vuyokazi
- Date: 2015
- Subjects: Medicinal plants , Antifungal agents , Fungi -- Biotechnology
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10948/5858 , vital:21001
- Description: Phytochemical analysis of both HEA1 and the crude plant extract showed the presence of phenolics, tannins and saponins. Saponins were the predominant secondary metabolites and were mostly abundant in the plant extract and to a lesser extent in the active compound. Steroidal saponins, tannins and phenolics were also detected in the plant extract, but only the phenolics were detected in the active compound. The results of the phytochemical analysis showed that those compounds that were not present in the active compound could be removed from the crude extract during the TLC purification process. Investigation on the mechanism of action of the crude plant extract on the sterol production by A. flavus showed that the plant extract affected ergosterol biosynthesis by causing an accumulation of oxidosqualene in the ergosterol biosynthetic pathway resulting in a decline in ergosterol production. An oscillatory response in lanosterol production was observed in the presence of the plant extract, which may be an adaptation mechanism of A. flavus to unfavourable conditions and compensation for the loss of enzyme activity which may have occurred as a result of the accumulation of oxidosqualene. The antifungal activity of the plant extract on ergosterol production by A. flavus may also be due to saponins which target the cell membrane and ergosterol production in fungi. The effect of the plant extract on the fungal cell wall of A. flavus also showed that the plant extract caused a decline in β-(1, 3) glucan production by inhibiting β-glucan synthase. The plant extract also affected the chitin synthesis pathway of A. flavus, by causing a decline in chitin production, which was due to the inhibition of chitin synthase. Investigation of chitinase production using 4MU substrates showed that the plant extract caused an accumulation of chitobioses, by activating chitobiosidases and endochitinases. A decline in N-acetylglucosaminidase activity in the presence of the plant extract was observed and this prevented the formation of N-acetylglucosamine. The accumulation of chitobiosidase and endochitinase may be as a result of autolysis that may be triggered by A. flavus as a survival mechanism in the presence of the plant extract and as a compensatory mechanism for the loss of β-glucans and chitin. The antifungal effect of the plant extract on various components of the cell wall of A. flavus, makes T. violacea aqueous plant extract an ideal chemotherapeutic agent against both human and plant pathogens of Aspergillus. The broad spectrum of antifungal activity of T. violacea against A. flavus also eliminates any chances of the fungus developing resistance towards it and would make it a candidate for use as a potential antifungal agent. Further identification and possible chemical synthesis is needed to shed light on the safety and efficacy of the active compound for further development as a chemotherapeutic agent.
- Full Text:
- Date Issued: 2015
- Authors: Belewa, Xoliswa Vuyokazi
- Date: 2015
- Subjects: Medicinal plants , Antifungal agents , Fungi -- Biotechnology
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10948/5858 , vital:21001
- Description: Phytochemical analysis of both HEA1 and the crude plant extract showed the presence of phenolics, tannins and saponins. Saponins were the predominant secondary metabolites and were mostly abundant in the plant extract and to a lesser extent in the active compound. Steroidal saponins, tannins and phenolics were also detected in the plant extract, but only the phenolics were detected in the active compound. The results of the phytochemical analysis showed that those compounds that were not present in the active compound could be removed from the crude extract during the TLC purification process. Investigation on the mechanism of action of the crude plant extract on the sterol production by A. flavus showed that the plant extract affected ergosterol biosynthesis by causing an accumulation of oxidosqualene in the ergosterol biosynthetic pathway resulting in a decline in ergosterol production. An oscillatory response in lanosterol production was observed in the presence of the plant extract, which may be an adaptation mechanism of A. flavus to unfavourable conditions and compensation for the loss of enzyme activity which may have occurred as a result of the accumulation of oxidosqualene. The antifungal activity of the plant extract on ergosterol production by A. flavus may also be due to saponins which target the cell membrane and ergosterol production in fungi. The effect of the plant extract on the fungal cell wall of A. flavus also showed that the plant extract caused a decline in β-(1, 3) glucan production by inhibiting β-glucan synthase. The plant extract also affected the chitin synthesis pathway of A. flavus, by causing a decline in chitin production, which was due to the inhibition of chitin synthase. Investigation of chitinase production using 4MU substrates showed that the plant extract caused an accumulation of chitobioses, by activating chitobiosidases and endochitinases. A decline in N-acetylglucosaminidase activity in the presence of the plant extract was observed and this prevented the formation of N-acetylglucosamine. The accumulation of chitobiosidase and endochitinase may be as a result of autolysis that may be triggered by A. flavus as a survival mechanism in the presence of the plant extract and as a compensatory mechanism for the loss of β-glucans and chitin. The antifungal effect of the plant extract on various components of the cell wall of A. flavus, makes T. violacea aqueous plant extract an ideal chemotherapeutic agent against both human and plant pathogens of Aspergillus. The broad spectrum of antifungal activity of T. violacea against A. flavus also eliminates any chances of the fungus developing resistance towards it and would make it a candidate for use as a potential antifungal agent. Further identification and possible chemical synthesis is needed to shed light on the safety and efficacy of the active compound for further development as a chemotherapeutic agent.
- Full Text:
- Date Issued: 2015
The in vitro biological activities of three Hypoxis species and their active compounds
- Authors: Boukes, Gerhardt Johannes
- Date: 2010
- Subjects: Potatoes -- Africa , Potatoes -- Therapeutic use , Medicinal plants
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:10322 , http://hdl.handle.net/10948/1228 , Potatoes -- Africa , Potatoes -- Therapeutic use , Medicinal plants
- Description: The African potato is used as an African traditional medicine for its nutritional and medicinal properties. Most research has been carried out on H. hemerocallidea, with very little or nothing on other Hypoxis spp. The main aim of this project was to provide scientific data on the anticancer, anti-inflammatory and antioxidant properties of H. hemerocallidea, H. stellipilis and H. sobolifera chloroform extracts and their active compounds. The hypoxoside and phytosterol contents of the three Hypoxis spp. were determined using TLC, HPLC and GC. H. hemerocallidea and H. sobolifera chloroform extracts contained the highest amounts of hypoxoside and β-sitosterol, respectively. For the anticancer properties, cytotoxicity of the Hypoxis extracts and its purified compounds were determined against the HeLa, HT-29 and MCF-7 cancer cell lines (using MTT), and PBMCs (using CellTiter-Blue®). H. sobolifera had the best cytotoxicity against the three cancer cell lines, whereas H. stellipilis stimulated HeLa and HT-29 cancer cell growth. IC50 values of hypoxoside and rooperol were determined. DNA cell cycle arrest (using PI staining) occurred in the late G1/early S (confirmed by increased p21Waf1/Cip1 expression) and G2/M phases after 15 and 48 hrs, respectively, when treated with Hypoxis extracts and rooperol. H. sobolifera and rooperol activated caspase-3 and -7 (using fluorescently labelled antibodies) in HeLa and HT-29 cancer cells, and caspase-7 in MCF-7 cancer cells after 48 hrs. Annexin V binding to phosphatidylserines in rooperol treated U937 cells confirmed early apoptosis after 15 hrs. The TUNEL assay showed DNA fragmentation in the three cancer cell lines when treated with H. sobolifera and rooperol for 48 hrs. A shift pass the G2/M phase has led to the investigation of endoreduplication, which was confirmed by cell/nucleus size, and anti-apoptotic proteins (Akt, phospho-Akt, phospho-Bcl-2 and p21Waf1/Cip1). U937 cell differentiation to monocyte-macrophages was optimized using PMA and 1,25(OH)2D3, which was confirmed by morphological and biochemical changes. For the anti-inflammatory properties, Hypoxis extracts and rooperol significantly increased NO production in monocyte-macrophages (pre-loaded with DAF-2 DA) and phagocytosis of pHrodoTM E. coli BioParticles®. The treatments had no effect on COX-2 expression in monocyte-macrophages. The phytosterols significantly increased IL-1β and IL-6 secretion xv (using the FlowCytomix Multiplex human Th1/Th2 10plex Kit I) in the PBMCs of one donor. For the antioxidant properties, Hypoxis extracts and rooperol significantly increased ROS production in undifferentiated and differentiated U937 cells, which were pre-loaded with DCFH-DA. Hypoxis extracts and purified compounds had ferric reducing activities, but only rooperol had ferric reducing activities significantly greater than ascorbic acid. β-sitosterol, campesterol and cholesterol significantly increased SOD activity in Chang liver cells, while H. stellipilis, H. sobolifera and rooperol decreased SOD activity. Anticancer, anti-inflammatory and antioxidant properties of the Hypoxis extracts may be attributed to the β-sitosterol content, because Hypoxis chloroform extracts contained very little or no hypoxoside. Unidentified compounds, and synergistic and additive effects of the compounds may have contributed to the biological effects. This study confirms previous reports that rooperol is the active compound. Results provide scientific data on the medicinal properties of one of the most frequently used medicinal plants in South Africa.
- Full Text:
- Date Issued: 2010
- Authors: Boukes, Gerhardt Johannes
- Date: 2010
- Subjects: Potatoes -- Africa , Potatoes -- Therapeutic use , Medicinal plants
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:10322 , http://hdl.handle.net/10948/1228 , Potatoes -- Africa , Potatoes -- Therapeutic use , Medicinal plants
- Description: The African potato is used as an African traditional medicine for its nutritional and medicinal properties. Most research has been carried out on H. hemerocallidea, with very little or nothing on other Hypoxis spp. The main aim of this project was to provide scientific data on the anticancer, anti-inflammatory and antioxidant properties of H. hemerocallidea, H. stellipilis and H. sobolifera chloroform extracts and their active compounds. The hypoxoside and phytosterol contents of the three Hypoxis spp. were determined using TLC, HPLC and GC. H. hemerocallidea and H. sobolifera chloroform extracts contained the highest amounts of hypoxoside and β-sitosterol, respectively. For the anticancer properties, cytotoxicity of the Hypoxis extracts and its purified compounds were determined against the HeLa, HT-29 and MCF-7 cancer cell lines (using MTT), and PBMCs (using CellTiter-Blue®). H. sobolifera had the best cytotoxicity against the three cancer cell lines, whereas H. stellipilis stimulated HeLa and HT-29 cancer cell growth. IC50 values of hypoxoside and rooperol were determined. DNA cell cycle arrest (using PI staining) occurred in the late G1/early S (confirmed by increased p21Waf1/Cip1 expression) and G2/M phases after 15 and 48 hrs, respectively, when treated with Hypoxis extracts and rooperol. H. sobolifera and rooperol activated caspase-3 and -7 (using fluorescently labelled antibodies) in HeLa and HT-29 cancer cells, and caspase-7 in MCF-7 cancer cells after 48 hrs. Annexin V binding to phosphatidylserines in rooperol treated U937 cells confirmed early apoptosis after 15 hrs. The TUNEL assay showed DNA fragmentation in the three cancer cell lines when treated with H. sobolifera and rooperol for 48 hrs. A shift pass the G2/M phase has led to the investigation of endoreduplication, which was confirmed by cell/nucleus size, and anti-apoptotic proteins (Akt, phospho-Akt, phospho-Bcl-2 and p21Waf1/Cip1). U937 cell differentiation to monocyte-macrophages was optimized using PMA and 1,25(OH)2D3, which was confirmed by morphological and biochemical changes. For the anti-inflammatory properties, Hypoxis extracts and rooperol significantly increased NO production in monocyte-macrophages (pre-loaded with DAF-2 DA) and phagocytosis of pHrodoTM E. coli BioParticles®. The treatments had no effect on COX-2 expression in monocyte-macrophages. The phytosterols significantly increased IL-1β and IL-6 secretion xv (using the FlowCytomix Multiplex human Th1/Th2 10plex Kit I) in the PBMCs of one donor. For the antioxidant properties, Hypoxis extracts and rooperol significantly increased ROS production in undifferentiated and differentiated U937 cells, which were pre-loaded with DCFH-DA. Hypoxis extracts and purified compounds had ferric reducing activities, but only rooperol had ferric reducing activities significantly greater than ascorbic acid. β-sitosterol, campesterol and cholesterol significantly increased SOD activity in Chang liver cells, while H. stellipilis, H. sobolifera and rooperol decreased SOD activity. Anticancer, anti-inflammatory and antioxidant properties of the Hypoxis extracts may be attributed to the β-sitosterol content, because Hypoxis chloroform extracts contained very little or no hypoxoside. Unidentified compounds, and synergistic and additive effects of the compounds may have contributed to the biological effects. This study confirms previous reports that rooperol is the active compound. Results provide scientific data on the medicinal properties of one of the most frequently used medicinal plants in South Africa.
- Full Text:
- Date Issued: 2010
Phytochemical analyses and Brine shrimp (Artemia Salina) lethality studies on Syzygium cordatum
- Authors: Chiguvare, Herbert
- Date: 2013
- Subjects: Artemia , Crustacea , Chromatographic analysis , Medicinal plants , Essences and essential oils , Traditional medicine
- Language: English
- Type: Thesis , Masters , MSc (Chemistry)
- Identifier: vital:11336 , http://hdl.handle.net/10353/d1004352 , Artemia , Crustacea , Chromatographic analysis , Medicinal plants , Essences and essential oils , Traditional medicine
- Description: Syzygium cordatum Hoscht ex. C Krauss, also known as water berry, is normally used by the people of South Africa for respiratory ailments including tuberculosis, stomach complaints, treatment of wounds and as emetics. An extract of the leaves can be used as a purgative for diarrhoea treatment. The leaves of Syzygium cordatum Myrtaceae were obtained from the Eastern Cape Province of South Africa, air dried and sequential solvent extraction was done to obtain various non volatile crude extracts. The volatile extract, that is the essential oil was extracted from the leaves using hydrodistillation and analysis of compounds was done by GC/MS for composition. 32 compounds were obtained from the fresh leaves and 18 compounds were obtained from the dry leaves. The fresh oil contains caryophyllene (11.8 percent) and caryophyllene oxide (11.1 percent) as the main sesquiterpene component. α-Pinene(5.0 percent) was the only monoterpene compound identified in the fresh oil in substantial amount. The dry leaves oil had copanene (17.0 percent), β-Caryophellene (26.0 percent), cubenol (6.5 percent) and caryophellene oxide (14.2 percent) as the dominant constituent of the oil. Summary of the classes of compounds in the oil revealed that the chemical profile of both oils were dominated by sesquiterpenoid compounds. This is the first time that terpenoids compounds are being identified in both the fresh and dry leaf oil of S. cordatum. Hexane leaf extract was selected due to the interest in the terpenoid compounds. Column chromatography of the hexane crude gave five (5) of which two are fully reported. The isolates were fully elucidated using spectroscopic methods to be β-Sitosterol (HC3) and Friedela-3-one (HC1A/HC1D). Cytotoxicity analysis was carried out on the crude using the Brine shrimps assay. Isolates 1C and1D showed significant lethality using the brine shrimps assay with lethality values (LC50) of 4.105mg/ml for HC1C and 4.11mg/ml for 1D/1A respectively.
- Full Text:
- Date Issued: 2013
- Authors: Chiguvare, Herbert
- Date: 2013
- Subjects: Artemia , Crustacea , Chromatographic analysis , Medicinal plants , Essences and essential oils , Traditional medicine
- Language: English
- Type: Thesis , Masters , MSc (Chemistry)
- Identifier: vital:11336 , http://hdl.handle.net/10353/d1004352 , Artemia , Crustacea , Chromatographic analysis , Medicinal plants , Essences and essential oils , Traditional medicine
- Description: Syzygium cordatum Hoscht ex. C Krauss, also known as water berry, is normally used by the people of South Africa for respiratory ailments including tuberculosis, stomach complaints, treatment of wounds and as emetics. An extract of the leaves can be used as a purgative for diarrhoea treatment. The leaves of Syzygium cordatum Myrtaceae were obtained from the Eastern Cape Province of South Africa, air dried and sequential solvent extraction was done to obtain various non volatile crude extracts. The volatile extract, that is the essential oil was extracted from the leaves using hydrodistillation and analysis of compounds was done by GC/MS for composition. 32 compounds were obtained from the fresh leaves and 18 compounds were obtained from the dry leaves. The fresh oil contains caryophyllene (11.8 percent) and caryophyllene oxide (11.1 percent) as the main sesquiterpene component. α-Pinene(5.0 percent) was the only monoterpene compound identified in the fresh oil in substantial amount. The dry leaves oil had copanene (17.0 percent), β-Caryophellene (26.0 percent), cubenol (6.5 percent) and caryophellene oxide (14.2 percent) as the dominant constituent of the oil. Summary of the classes of compounds in the oil revealed that the chemical profile of both oils were dominated by sesquiterpenoid compounds. This is the first time that terpenoids compounds are being identified in both the fresh and dry leaf oil of S. cordatum. Hexane leaf extract was selected due to the interest in the terpenoid compounds. Column chromatography of the hexane crude gave five (5) of which two are fully reported. The isolates were fully elucidated using spectroscopic methods to be β-Sitosterol (HC3) and Friedela-3-one (HC1A/HC1D). Cytotoxicity analysis was carried out on the crude using the Brine shrimps assay. Isolates 1C and1D showed significant lethality using the brine shrimps assay with lethality values (LC50) of 4.105mg/ml for HC1C and 4.11mg/ml for 1D/1A respectively.
- Full Text:
- Date Issued: 2013
Usage of traditional medicines and other indigenous practices by childbearing women during pregnancy in Makoni District, Zimbabwe
- Authors: Chituku, Sibongile
- Date: 2020-09
- Subjects: Traditional medicine -- Zimbabwe , Medicinal plants
- Language: English
- Type: Doctoral theses , text
- Identifier: http://hdl.handle.net/10353/20142 , vital:45347
- Description: Use of traditional medicinal plants (TMPs) during pregnancy, labour and delivery is common globally although evidence on their therapeutic effectiveness and safety is scarce. Research relating to indigenous practices and utilisation of traditional medicinal plants by childbearing women during pregnancy in Makoni District, Zimbabwe was carried out. The study included identification of culturally important indigenous knowledge (IK) practices and TMPs used by pregnant women in order to understand how such plants and practices may affect maternal, foetal, labour, and infant outcomes. Four hundred questionnaires were distributed to postnatal mothers in Makoni District, aimed at obtaining information on IK practices associated with utilisation of TMPs by childbearing women during pregnancy. In addition to this, five focused group discussions were carried out between September 2016 and December 2017 with 66 traditional healers from Makoni District. Documented information included names of utilised plants, plant parts used, dosage, methods of preparation and administration, and reasons for use. Voucher specimens of the utilised plant species were collected. Brine shrimp lethality test was used to evaluate potential toxicity of the documented plant species. The collected data were analysed used Epi info version 7.1 and SPSS version 16.5. Quantitative data revealed that 168 (42.0percent) of pregnant women in Makoni District use TMPs and 95 (23.8percent) used traditional practices (including elephant dung) for maternal and childcare. Among the women who used TMPs were those who experienced precipitated and prolonged labour. Correlation was found between demographic factors and utilisation of TMPs. For example, being a Christian was significantly associated with using TMPs with relative risk (RR) value of 8.9. Postnatal mothers who used TMPs during their pregnancy were 82.0percent less likely to have their membranes ruptured artificially, RR = 0.2 and more likely to experience late decelerations during active phase (RR = 2.8) than those who did not use TMPs. The differences between those who used TMPs and those who did not during pregnancy and labour, showed no significant differences in infant outcomes. The ethnobotanical survey revealed that a total of 47 plant species from 27 families and 13 non-plant products were used as herbal, complementary and alternative medicines (CAM) by pregnant women. More than half of all the documented plant species (59.8percent), belonged to the Fabaceae (19.1), Asteraceae, (8.5percent), Convolvulaceae (6.4percent), Asparagaceae, Euphorbiaceae, Malvaceae, Rubiaceae, Vitaceae and Xanthorrhoeaceae (4.3percent each) families. The most used plants were shrubs (40.4percent), trees (27.7percent), climbers (17.0percent), herbs (12.8percent) and a grasses (2.1percent). The most used plant parts were roots (61.7percent), leaves (25.5percent), fruits (12.8percent) and bark (10.6percent). A total of 26 medical conditions were treated with the majority of medicinal plants used to dilate or widen the birth canal (55.3percent) and to augment labour or speed up the delivery process (46.8percent). Interviews with traditional healers revealed that 14.9percent of the documented herbal medicines were used to guard against witchcraft and to prevent the infants’ illnesses. Other major uses of herbal medicines during pregnancy included their use to lower blood pressure or hypertension during pregnancy (12.8percent), to prevent caesarean section (10.6percent) and to loosen or relax muscles during pregnancy (8.5percent). Widely used non-plant products included soil of a burrowing mole (relative frequency citation (RFC) value of 0.61), elephant dung (RFC = 0.59), wasp nest (RFC = 0.32) and soap (RFC = 25). The majority of these non-plant products (22.8percent) were used to dilate birth canal (7.6percent) and augment labour (15.2percent). None of the twenty-five species with (RFC) > 0.05 evaluated for potential toxicity were categorised as toxic, but Albizia amara, Datura stramonium and Ricinus communis were categorised as having medium toxicity levels, nine species as having low toxicity levels while 13 species were categorised as non-toxic. This study provides valuable insights into the use of medicinal plants used by women during pregnancy, labour, delivery and post-delivery in Makoni District, Zimbabwe. Medicinal plants play an integral role in the provision of basic health care in Zimbabwe. However, the brine shrimp lethality test results categorised some of the prescribed species such as Albizia amara, Datura stramonium and Ricinus communis as having medium levels of toxicity and this is a cause of concern regarding utilization of TMPs during pregnancy. Therefore, TMPs used during pregnancy should be subjected to detailed phytochemical, pharmacological and toxicological experiments aimed at identifying some of the potential toxic compounds and side effects associated with intake of TMPs and associated herbal products. , Thesis (PhD(Nursing)) -- Faculty of Health Sciences, 2020
- Full Text:
- Date Issued: 2020-09
- Authors: Chituku, Sibongile
- Date: 2020-09
- Subjects: Traditional medicine -- Zimbabwe , Medicinal plants
- Language: English
- Type: Doctoral theses , text
- Identifier: http://hdl.handle.net/10353/20142 , vital:45347
- Description: Use of traditional medicinal plants (TMPs) during pregnancy, labour and delivery is common globally although evidence on their therapeutic effectiveness and safety is scarce. Research relating to indigenous practices and utilisation of traditional medicinal plants by childbearing women during pregnancy in Makoni District, Zimbabwe was carried out. The study included identification of culturally important indigenous knowledge (IK) practices and TMPs used by pregnant women in order to understand how such plants and practices may affect maternal, foetal, labour, and infant outcomes. Four hundred questionnaires were distributed to postnatal mothers in Makoni District, aimed at obtaining information on IK practices associated with utilisation of TMPs by childbearing women during pregnancy. In addition to this, five focused group discussions were carried out between September 2016 and December 2017 with 66 traditional healers from Makoni District. Documented information included names of utilised plants, plant parts used, dosage, methods of preparation and administration, and reasons for use. Voucher specimens of the utilised plant species were collected. Brine shrimp lethality test was used to evaluate potential toxicity of the documented plant species. The collected data were analysed used Epi info version 7.1 and SPSS version 16.5. Quantitative data revealed that 168 (42.0percent) of pregnant women in Makoni District use TMPs and 95 (23.8percent) used traditional practices (including elephant dung) for maternal and childcare. Among the women who used TMPs were those who experienced precipitated and prolonged labour. Correlation was found between demographic factors and utilisation of TMPs. For example, being a Christian was significantly associated with using TMPs with relative risk (RR) value of 8.9. Postnatal mothers who used TMPs during their pregnancy were 82.0percent less likely to have their membranes ruptured artificially, RR = 0.2 and more likely to experience late decelerations during active phase (RR = 2.8) than those who did not use TMPs. The differences between those who used TMPs and those who did not during pregnancy and labour, showed no significant differences in infant outcomes. The ethnobotanical survey revealed that a total of 47 plant species from 27 families and 13 non-plant products were used as herbal, complementary and alternative medicines (CAM) by pregnant women. More than half of all the documented plant species (59.8percent), belonged to the Fabaceae (19.1), Asteraceae, (8.5percent), Convolvulaceae (6.4percent), Asparagaceae, Euphorbiaceae, Malvaceae, Rubiaceae, Vitaceae and Xanthorrhoeaceae (4.3percent each) families. The most used plants were shrubs (40.4percent), trees (27.7percent), climbers (17.0percent), herbs (12.8percent) and a grasses (2.1percent). The most used plant parts were roots (61.7percent), leaves (25.5percent), fruits (12.8percent) and bark (10.6percent). A total of 26 medical conditions were treated with the majority of medicinal plants used to dilate or widen the birth canal (55.3percent) and to augment labour or speed up the delivery process (46.8percent). Interviews with traditional healers revealed that 14.9percent of the documented herbal medicines were used to guard against witchcraft and to prevent the infants’ illnesses. Other major uses of herbal medicines during pregnancy included their use to lower blood pressure or hypertension during pregnancy (12.8percent), to prevent caesarean section (10.6percent) and to loosen or relax muscles during pregnancy (8.5percent). Widely used non-plant products included soil of a burrowing mole (relative frequency citation (RFC) value of 0.61), elephant dung (RFC = 0.59), wasp nest (RFC = 0.32) and soap (RFC = 25). The majority of these non-plant products (22.8percent) were used to dilate birth canal (7.6percent) and augment labour (15.2percent). None of the twenty-five species with (RFC) > 0.05 evaluated for potential toxicity were categorised as toxic, but Albizia amara, Datura stramonium and Ricinus communis were categorised as having medium toxicity levels, nine species as having low toxicity levels while 13 species were categorised as non-toxic. This study provides valuable insights into the use of medicinal plants used by women during pregnancy, labour, delivery and post-delivery in Makoni District, Zimbabwe. Medicinal plants play an integral role in the provision of basic health care in Zimbabwe. However, the brine shrimp lethality test results categorised some of the prescribed species such as Albizia amara, Datura stramonium and Ricinus communis as having medium levels of toxicity and this is a cause of concern regarding utilization of TMPs during pregnancy. Therefore, TMPs used during pregnancy should be subjected to detailed phytochemical, pharmacological and toxicological experiments aimed at identifying some of the potential toxic compounds and side effects associated with intake of TMPs and associated herbal products. , Thesis (PhD(Nursing)) -- Faculty of Health Sciences, 2020
- Full Text:
- Date Issued: 2020-09
Selected medicinal plants leaves identification: a computer vision approach
- Authors: Deyi, Avuya
- Date: 2023-10-13
- Subjects: Deep learning (Machine learning) , Machine learning , Convolutional neural network , Computer vision in medicine , Medicinal plants
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/424552 , vital:72163
- Description: Identifying and classifying medicinal plants are valuable and essential skills during drug manufacturing because several active pharmaceutical ingredients (API) are sourced from medicinal plants. For many years, identifying and classifying medicinal plants have been exclusively done by experts in the domain, such as botanists, and herbarium curators. Recently, powerful computer vision technologies, using machine learning and deep convolutional neural networks, have been developed for classifying or identifying objects on images. A convolutional neural network is a deep learning architecture that outperforms previous advanced approaches in image classification and object detection based on its efficient features extraction on images. In this thesis, we investigate different convolutional neural networks and machine learning algorithms for identifying and classifying leaves of three species of the genus Brachylaena. The three species considered are Brachylaena discolor, Brachylaena ilicifolia and Brachylaena elliptica. All three species are used medicinally by people in South Africa to treat diseases like diabetes. From 1259 labelled images of those plants species (at least 400 for each species) split into training, evaluation and test sets, we trained and evaluated different deep convolutional neural networks and machine learning models. The VGG model achieved the best results with 98.26% accuracy from cross-validation. , Thesis (MSc) -- Faculty of Science, Mathematics, 2023
- Full Text:
- Date Issued: 2023-10-13
- Authors: Deyi, Avuya
- Date: 2023-10-13
- Subjects: Deep learning (Machine learning) , Machine learning , Convolutional neural network , Computer vision in medicine , Medicinal plants
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/424552 , vital:72163
- Description: Identifying and classifying medicinal plants are valuable and essential skills during drug manufacturing because several active pharmaceutical ingredients (API) are sourced from medicinal plants. For many years, identifying and classifying medicinal plants have been exclusively done by experts in the domain, such as botanists, and herbarium curators. Recently, powerful computer vision technologies, using machine learning and deep convolutional neural networks, have been developed for classifying or identifying objects on images. A convolutional neural network is a deep learning architecture that outperforms previous advanced approaches in image classification and object detection based on its efficient features extraction on images. In this thesis, we investigate different convolutional neural networks and machine learning algorithms for identifying and classifying leaves of three species of the genus Brachylaena. The three species considered are Brachylaena discolor, Brachylaena ilicifolia and Brachylaena elliptica. All three species are used medicinally by people in South Africa to treat diseases like diabetes. From 1259 labelled images of those plants species (at least 400 for each species) split into training, evaluation and test sets, we trained and evaluated different deep convolutional neural networks and machine learning models. The VGG model achieved the best results with 98.26% accuracy from cross-validation. , Thesis (MSc) -- Faculty of Science, Mathematics, 2023
- Full Text:
- Date Issued: 2023-10-13
The medicinal plant Sutherlandia Frutescens regulates gene expression to reverse insulin resistace in rats
- Authors: Fortuin, Melissa
- Date: 2013
- Subjects: Insulin resistance , Medicinal plants , Genetic regulation , Insulin resistance -- Animal models
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:10349 , http://hdl.handle.net/10948/d1020823
- Description: Obesity can lead to Type 2 Diabetes, both conditions increase in association with physical inactivity and high-energy diets, resulting in elevated blood glucose, decreased insulin sensitivity and increased insulin resistance. Sutherlandia frutescens (S.frutescens), an anti-diabetic plant, reverses and prevents insulin resistance in a rat model and human cell culture model. Gene expression analysis in hepatocyte cultures, identified genes down regulated in insulin resistance and up regulated by S.frutescens. These included genes encoding vesicle transporter proteins, hypothesised to be linked to hepatic lipid accumulation and lipid droplet formation during insulin resistance. The aim of this study was to investigate critical genes involved in lipid droplet formation, vesicle assembly and transport in high fat diet (HFD)-induced insulin resistant rat liver tissue during the development of insulin resistance and the reversal of these changes by S.frutescens. Rats were fed a low fat diet (LFD) or HFD supplemented with S.frutescens for 2, 4 and 8 weeks. Rats fed a HFD for 12 weeks developed insulin resistance, confirmed by plasma glucose and insulin levels (compared to normal controls). Groups of these rats were gavaged with S. frutescens (50mg/kg BW), Metformin (13mg/kg BW) or water for a further 4 weeks and starved for 12 hours, anaesthetized and blood removed by heart puncture. Liver was stored in RNA-Later™ for qRT-PCR and snap-frozen in liquid nitrogen for western blotting and confocal microscopy analysis. Changes in expression of vesicle transporter genes VAMP3 and NSF were analysed by qRT-PCR and changes in the protein expression by western blotting analysis. Proteins were localised within the liver by confocal immunohistochemistry using ZEN lite™ software. Statistical analysis was performed using One-Way ANOVA and unpaired t-test. mRNA gene expression of vesicle transport components VAMP3, NSF and SNAP25 showed relatively moderate changes with considerable individual variation within control or experimental groups. Uncorrelated changes in mRNA and protein products were found and may be due to differential regulation by siRNA. Proteins also showed altered staining patterns in high fat diet rats that reverted towards normal on S. frutescens treatment, potentially reflecting functional changes associated with transport of lipid-filled vesicles.
- Full Text:
- Date Issued: 2013
- Authors: Fortuin, Melissa
- Date: 2013
- Subjects: Insulin resistance , Medicinal plants , Genetic regulation , Insulin resistance -- Animal models
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:10349 , http://hdl.handle.net/10948/d1020823
- Description: Obesity can lead to Type 2 Diabetes, both conditions increase in association with physical inactivity and high-energy diets, resulting in elevated blood glucose, decreased insulin sensitivity and increased insulin resistance. Sutherlandia frutescens (S.frutescens), an anti-diabetic plant, reverses and prevents insulin resistance in a rat model and human cell culture model. Gene expression analysis in hepatocyte cultures, identified genes down regulated in insulin resistance and up regulated by S.frutescens. These included genes encoding vesicle transporter proteins, hypothesised to be linked to hepatic lipid accumulation and lipid droplet formation during insulin resistance. The aim of this study was to investigate critical genes involved in lipid droplet formation, vesicle assembly and transport in high fat diet (HFD)-induced insulin resistant rat liver tissue during the development of insulin resistance and the reversal of these changes by S.frutescens. Rats were fed a low fat diet (LFD) or HFD supplemented with S.frutescens for 2, 4 and 8 weeks. Rats fed a HFD for 12 weeks developed insulin resistance, confirmed by plasma glucose and insulin levels (compared to normal controls). Groups of these rats were gavaged with S. frutescens (50mg/kg BW), Metformin (13mg/kg BW) or water for a further 4 weeks and starved for 12 hours, anaesthetized and blood removed by heart puncture. Liver was stored in RNA-Later™ for qRT-PCR and snap-frozen in liquid nitrogen for western blotting and confocal microscopy analysis. Changes in expression of vesicle transporter genes VAMP3 and NSF were analysed by qRT-PCR and changes in the protein expression by western blotting analysis. Proteins were localised within the liver by confocal immunohistochemistry using ZEN lite™ software. Statistical analysis was performed using One-Way ANOVA and unpaired t-test. mRNA gene expression of vesicle transport components VAMP3, NSF and SNAP25 showed relatively moderate changes with considerable individual variation within control or experimental groups. Uncorrelated changes in mRNA and protein products were found and may be due to differential regulation by siRNA. Proteins also showed altered staining patterns in high fat diet rats that reverted towards normal on S. frutescens treatment, potentially reflecting functional changes associated with transport of lipid-filled vesicles.
- Full Text:
- Date Issued: 2013
Outcomes of Drug Resistant Tuberculosis in Two Rural District Hospitals, Eastern Cape Province, South Africa
- Authors: Lotz, John-D Knipe
- Date: 2021-02
- Subjects: Medicinal plants
- Language: English
- Type: Masters theses , text
- Identifier: http://hdl.handle.net/11260/6834 , vital:51018
- Description: Tuberculosis (TB) is still rampant in South Africa, and drug resistant tuberculosis (DR-TB) forms a significant part of this burden on both the health care system and economy. A number of interventions have recently been introduced to help curb the growing epidemic of DR-TB, including increasing access to novel and repurposed drugs, decentralisation of care, and a new shorter (9-11 month) treatment regimen recently endorsed by the World Health Organization (WHO). Significantly, this new regimen has now also become injectable-free (also known as an all-oral regimen). However, at the time of implementation in 2017, the shorter regimen was yet to be proven effective in a programmatic setting in South Africa. This is a retrospective cohort study to describe the outcomes in patients on short and long DR-TB treatment regimens, over five years, at two treatment sites in a rural setting in the Eastern Cape province of South Africa. It is the hope that elucidation of factors involved in affecting outcomes in DR-TB may direct future interventions in these two facilities, and the wider DR-TB program in South Africa , Thesis (Masters) -- Faculty of Health Sciences, 2021
- Full Text:
- Date Issued: 2021-02
- Authors: Lotz, John-D Knipe
- Date: 2021-02
- Subjects: Medicinal plants
- Language: English
- Type: Masters theses , text
- Identifier: http://hdl.handle.net/11260/6834 , vital:51018
- Description: Tuberculosis (TB) is still rampant in South Africa, and drug resistant tuberculosis (DR-TB) forms a significant part of this burden on both the health care system and economy. A number of interventions have recently been introduced to help curb the growing epidemic of DR-TB, including increasing access to novel and repurposed drugs, decentralisation of care, and a new shorter (9-11 month) treatment regimen recently endorsed by the World Health Organization (WHO). Significantly, this new regimen has now also become injectable-free (also known as an all-oral regimen). However, at the time of implementation in 2017, the shorter regimen was yet to be proven effective in a programmatic setting in South Africa. This is a retrospective cohort study to describe the outcomes in patients on short and long DR-TB treatment regimens, over five years, at two treatment sites in a rural setting in the Eastern Cape province of South Africa. It is the hope that elucidation of factors involved in affecting outcomes in DR-TB may direct future interventions in these two facilities, and the wider DR-TB program in South Africa , Thesis (Masters) -- Faculty of Health Sciences, 2021
- Full Text:
- Date Issued: 2021-02
Pharmacological Evaluation and Medicinal Potential of Vachellia Karroo (Hayne) Banfi & Galasso Pods traditionally used to treat Sexually Transmitted Diseases in the Eastern Cape, South Africa.
- Authors: Maposa, Sandisiwe
- Date: 2019
- Subjects: Medicinal plants
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10353/14583 , vital:40017
- Description: Vachellia karroo is widely used in folk medicine in the Eastern Cape Province South Africa, however, the pods are usually discarded as waste. The current study was conducted to evaluate the phytochemical content and the antioxidant activity of V. karroo pods. The pods were extracted using acetone, distilled water, hexane and methanol. The total phenol, flavonoid, proanthocyanidin, alkaloid and saponin contents of the various extracts were determined spectrometrically and antioxidant activity was evaluated using inhibition of 2,2-diphenyl-1- picrylhydrazyl (DPPH), 2,2´-azino-bis-(3-ethylbenzothiazoline-6-sulphonic acid (ABTS), nitric oxide (NO) radicals, while total antioxidant capacity (TAC) was estimated by the phosphomolybdenum assay. V. karro pods had significant amounts of total phenols, flavonoids and proanthocynadin, although, proanthocynadin was not detected in the aqueous and hexane extracts. Methanol and acetone extracts showed higher phenolic, proanthocynadin and flavonoids contents (52.47 ± 6.82 and 29.31 ± 1.49), (334.8±85.1 and 231.22 ±1.80),(288±4.26 & 208.2±17.7) compared to the aqueous and hexane extracts. The alkaloid and saponin contents were 26.67 and 12.85 % respectively. The IC50 values of the methanol extract for DPPH, ABTS and total antioxidant capacity (TAC) were 0.345, 0.017 and 0.116 mg/mL, respectively. Methanol extract of V. karroo pod showed higher polyphenolic content of all the extracts analysed with corresponding strong free radical scavenging potential. These underutilized pods could serve as a new source of antioxidant compounds which could help in combating various ailments. The great antioxidant activity displayed by V. karroo pods extract supports the therapeutic use of this plant in traditional medicine and are attributed to the phytochemical content.The current information suggests that extracts from Vachellia karroo pods might be a ix cheap potential source of natural antioxidants that could be of great importance for the treatment of free radical related diseases. Furthermore, it makes a case for the utilization of the pods instead of discarding them as waste materials. The evaluation of antimicrobial potential of Vachellia karroo extracts was carried out using agar dilution assay against 8 bacterial strains-4 gram-positive [ Enterococcus faecalis (ATCC 29212), Staphylococcus aureus (OK), Bacillus subtilis KZN, Bacillus cereus, and Streptococcus pyogenes] and 4 gram-negative strains[ Vibrio cholera, Klebsiella pneumonia (ATCC 4352), Pseudomonas aeruginosa (ATCC 19582), Salmonella typhi (OK) ]. Six fungal isolates[ Trichophyton mucoides ATCC 201382, Candida albicans (ATCC 10231), Candida glabatra, Penicillium chrysogenum, Aspergillus fumigatus, Penicillum aurantiogriseum] were usedor antifungal assessment. The methanol extract exhibited broad-spectrum activity, with Gram-positive strains being more sensitive than Gram-negative strains. The extracts also showed great inhibition against Candida albicans the fungal isolate responsible for causing candidiasis in women. Since the pods showed promising antimicrobial activity, they could serve as a cheap source for the treatment and management of these sexually transmitted infections. The brine shrimp toxicity test revealed successful hatching of the cysts was in the order: Aqueous extract> methanol extract> hexane extract> acetone extract. The hatching of nauplii was in a concentration dependent fashion, with hatching success decreasing with increase in concentration of extracts. Lethality of extracts determined based on Meyerʼs index of toxicity, showed that the acetone and hexane extracts of V. karroo were moderately toxic. The results of this study indicated that aqueous and methanolic extracts of Vachellia karroo pods were not toxic, therefore supporting its traditional therapeutic usage. This implies that rather than discard x the pods as is waste as it being currently done, Vachellia karroo pods could be salvaged and processed along with the leaves, thus reducing environmental pollution. Proximate parameters (moisture, ash, crude fibre, crude fat, proteins, and carbohydrate) were evaluated using ALASA methods, and elemental analysis by ICP-OES technique. Nutritional analysis showed that V. karroo pods had low content of crude fat and high content of crude fibre, ash, crude protein, and carbohydrate sufficient to meet the recommended dietary allowances. The pods were rich in major minerals Ca, K, P and Mg, with sufficient amount of trace elements Na, Fe, Zn, and Cu. The outcome of this study suggests that Vachellia karroo pods have good nutritional potentials to support or complement the recommended dietary allowance and could be a cheap source of essential nutrients that could help in ameliorating most nutritional challenges as well as contribute remarkably to the amount of nutrient intake in human and animal diets.
- Full Text:
- Date Issued: 2019
- Authors: Maposa, Sandisiwe
- Date: 2019
- Subjects: Medicinal plants
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10353/14583 , vital:40017
- Description: Vachellia karroo is widely used in folk medicine in the Eastern Cape Province South Africa, however, the pods are usually discarded as waste. The current study was conducted to evaluate the phytochemical content and the antioxidant activity of V. karroo pods. The pods were extracted using acetone, distilled water, hexane and methanol. The total phenol, flavonoid, proanthocyanidin, alkaloid and saponin contents of the various extracts were determined spectrometrically and antioxidant activity was evaluated using inhibition of 2,2-diphenyl-1- picrylhydrazyl (DPPH), 2,2´-azino-bis-(3-ethylbenzothiazoline-6-sulphonic acid (ABTS), nitric oxide (NO) radicals, while total antioxidant capacity (TAC) was estimated by the phosphomolybdenum assay. V. karro pods had significant amounts of total phenols, flavonoids and proanthocynadin, although, proanthocynadin was not detected in the aqueous and hexane extracts. Methanol and acetone extracts showed higher phenolic, proanthocynadin and flavonoids contents (52.47 ± 6.82 and 29.31 ± 1.49), (334.8±85.1 and 231.22 ±1.80),(288±4.26 & 208.2±17.7) compared to the aqueous and hexane extracts. The alkaloid and saponin contents were 26.67 and 12.85 % respectively. The IC50 values of the methanol extract for DPPH, ABTS and total antioxidant capacity (TAC) were 0.345, 0.017 and 0.116 mg/mL, respectively. Methanol extract of V. karroo pod showed higher polyphenolic content of all the extracts analysed with corresponding strong free radical scavenging potential. These underutilized pods could serve as a new source of antioxidant compounds which could help in combating various ailments. The great antioxidant activity displayed by V. karroo pods extract supports the therapeutic use of this plant in traditional medicine and are attributed to the phytochemical content.The current information suggests that extracts from Vachellia karroo pods might be a ix cheap potential source of natural antioxidants that could be of great importance for the treatment of free radical related diseases. Furthermore, it makes a case for the utilization of the pods instead of discarding them as waste materials. The evaluation of antimicrobial potential of Vachellia karroo extracts was carried out using agar dilution assay against 8 bacterial strains-4 gram-positive [ Enterococcus faecalis (ATCC 29212), Staphylococcus aureus (OK), Bacillus subtilis KZN, Bacillus cereus, and Streptococcus pyogenes] and 4 gram-negative strains[ Vibrio cholera, Klebsiella pneumonia (ATCC 4352), Pseudomonas aeruginosa (ATCC 19582), Salmonella typhi (OK) ]. Six fungal isolates[ Trichophyton mucoides ATCC 201382, Candida albicans (ATCC 10231), Candida glabatra, Penicillium chrysogenum, Aspergillus fumigatus, Penicillum aurantiogriseum] were usedor antifungal assessment. The methanol extract exhibited broad-spectrum activity, with Gram-positive strains being more sensitive than Gram-negative strains. The extracts also showed great inhibition against Candida albicans the fungal isolate responsible for causing candidiasis in women. Since the pods showed promising antimicrobial activity, they could serve as a cheap source for the treatment and management of these sexually transmitted infections. The brine shrimp toxicity test revealed successful hatching of the cysts was in the order: Aqueous extract> methanol extract> hexane extract> acetone extract. The hatching of nauplii was in a concentration dependent fashion, with hatching success decreasing with increase in concentration of extracts. Lethality of extracts determined based on Meyerʼs index of toxicity, showed that the acetone and hexane extracts of V. karroo were moderately toxic. The results of this study indicated that aqueous and methanolic extracts of Vachellia karroo pods were not toxic, therefore supporting its traditional therapeutic usage. This implies that rather than discard x the pods as is waste as it being currently done, Vachellia karroo pods could be salvaged and processed along with the leaves, thus reducing environmental pollution. Proximate parameters (moisture, ash, crude fibre, crude fat, proteins, and carbohydrate) were evaluated using ALASA methods, and elemental analysis by ICP-OES technique. Nutritional analysis showed that V. karroo pods had low content of crude fat and high content of crude fibre, ash, crude protein, and carbohydrate sufficient to meet the recommended dietary allowances. The pods were rich in major minerals Ca, K, P and Mg, with sufficient amount of trace elements Na, Fe, Zn, and Cu. The outcome of this study suggests that Vachellia karroo pods have good nutritional potentials to support or complement the recommended dietary allowance and could be a cheap source of essential nutrients that could help in ameliorating most nutritional challenges as well as contribute remarkably to the amount of nutrient intake in human and animal diets.
- Full Text:
- Date Issued: 2019
Contested environmental knowledge: Struggles over meanings and uses of medicinal plants in Kabokweni, Mpumalanga Province, South Africa
- Authors: Mbeng, Emiline Oben Otang
- Date: 2020-09
- Subjects: Medicinal plants , Ethnobiology
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10353/21146 , vital:47143
- Description: The main aim of this study was to examine the meanings attached by locals to medicinal plants in Kabokweni, Mpumalanga and how such meanings tend to shape the character of local struggles over access to, use and even commercial benefits of medicinal plants. This study draws its theoretical schema from political ecology, especially ethnoecology where the goal is to elucidate environmental conflict, most especially in terms of contestations over knowledge, power and practice, as they relate to the meaning and control of medicinal plants in Kabokweni. The study, therefore, recognises the complex interconnections between nature and society through a careful analysis of what one might call the forms of access and control over resources and their consequences for environmental health and sustainable livelihood. In-depth interviews, oral histories and non-participant observation were used to collect data and thematic analysis was used to analyse the data into meaningful themes according to the research questions and objectives of the study. The study found that Swati medicinal plant names are not subjective, but depend on socio-cultural and pragmatic perspectives, and meanings shape local struggles over medicinal plants in Kabokweni. Four underlying discourses were identified from the analysis of local narratives on the meanings and uses of medicinal plants. Each discourse offered a noticeably different concept of medicinal plants and people-plant relationships. Firstly, the ‘sustainability discourse’ referred to the role of foresters and environmentalists in sustainably managing plant resources. Secondly, the ‘livelihood discourse’ was entrenched in the local culture and economy. Thirdly, the ‘knowledge discourse’ conceptualises medicinal plants predominantly in terms of species richness and natural processes, while the ‘economic discourse’ emphasised the economic potential of medicines derived from plants as their major concern. Powerful social actors who influenced decisions about use and management of indigenous medicinal plants controlled these discourses. Finally, the study argues that rural communities would continue harvesting natural resources, even if illegally. Hence, to avert conflicts between indigenous actors and environmental agencies, communities need to be integrated into management programs, so they can be aware of some crucial issues such as sustainable harvesting of medicinal plants. , Thesis (MSoc) -- Faculty of Social Science and Humanities, 2020
- Full Text:
- Date Issued: 2020-09
- Authors: Mbeng, Emiline Oben Otang
- Date: 2020-09
- Subjects: Medicinal plants , Ethnobiology
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10353/21146 , vital:47143
- Description: The main aim of this study was to examine the meanings attached by locals to medicinal plants in Kabokweni, Mpumalanga and how such meanings tend to shape the character of local struggles over access to, use and even commercial benefits of medicinal plants. This study draws its theoretical schema from political ecology, especially ethnoecology where the goal is to elucidate environmental conflict, most especially in terms of contestations over knowledge, power and practice, as they relate to the meaning and control of medicinal plants in Kabokweni. The study, therefore, recognises the complex interconnections between nature and society through a careful analysis of what one might call the forms of access and control over resources and their consequences for environmental health and sustainable livelihood. In-depth interviews, oral histories and non-participant observation were used to collect data and thematic analysis was used to analyse the data into meaningful themes according to the research questions and objectives of the study. The study found that Swati medicinal plant names are not subjective, but depend on socio-cultural and pragmatic perspectives, and meanings shape local struggles over medicinal plants in Kabokweni. Four underlying discourses were identified from the analysis of local narratives on the meanings and uses of medicinal plants. Each discourse offered a noticeably different concept of medicinal plants and people-plant relationships. Firstly, the ‘sustainability discourse’ referred to the role of foresters and environmentalists in sustainably managing plant resources. Secondly, the ‘livelihood discourse’ was entrenched in the local culture and economy. Thirdly, the ‘knowledge discourse’ conceptualises medicinal plants predominantly in terms of species richness and natural processes, while the ‘economic discourse’ emphasised the economic potential of medicines derived from plants as their major concern. Powerful social actors who influenced decisions about use and management of indigenous medicinal plants controlled these discourses. Finally, the study argues that rural communities would continue harvesting natural resources, even if illegally. Hence, to avert conflicts between indigenous actors and environmental agencies, communities need to be integrated into management programs, so they can be aware of some crucial issues such as sustainable harvesting of medicinal plants. , Thesis (MSoc) -- Faculty of Social Science and Humanities, 2020
- Full Text:
- Date Issued: 2020-09
Molecular characterization, antibiograms and activity of medicinal plants against streptococcus pneumoniae and haemophilus influenzae isolates from clinical samples of patients in the Eastern Cape province, South Africa
- Authors: Morobe, Isaac Christopher
- Date: 2015-00
- Subjects: Medicinal plants
- Language: English
- Type: Master's/Doctoral theses , text
- Identifier: http://hdl.handle.net/11260/6469 , vital:46340
- Description: H. influenzae and S. pneumoniae are important causes of community acquired respiratory tract infections including, pneumonia, acute sinusitis, otitis media, meningitis, bacteremia, sepsis, osteomyelitis, pericarditis, septic arthritis, endocarditis, peritonitis, cellulitis and brain abscesses. The ability to effectively treat bacterial infections has been compromised in recent years due to the acquisition of antibiotic resistance, particularly to β-lactam drugs. The increasing trends in antibiotic resistance have prompted incessant searches aimed at unraveling new effective sources for the management of microbial infections. Plant derived antimicrobial compounds that have no or minimal toxicity to host cells are considered candidates for developing new antimicrobial drugs. Safety is therefore critical in the development and formulation of such antimicrobials. In addition to studies on the structural elucidation of active compounds of selected medicinal plants and determination of their toxicity levels, concerted investigations on the molecular landscape of the designated bacteria, including genes coding for resistance and virulence, the phylogenetic profiles of isolates from different sources and the abilities of isolates to withstand the normal bactericidal activities of human serum samples from different blood groups are critical for a thorough understanding of the management, pathogenetic and clinico- epidemiological trajectories of the pathogens. Therefore, the aims of the various studies were to characterize local H. influenzae and S. pneumoniae isolates by serological and molecular methods; ascertain the antibiotic susceptibility profiles of isolates in order to provide updated data and guide clinicians and other health care workers on the empiric management of patients; determine genes coding for virulence and phylogenetic relatedness of isolates of H. influenzae and S. pneumoniae from diverse sources; ascertain the bactericidal activity of human serum samples from different blood groups against H. influenzae and S. pneumoniae and also to determine the activity of active compounds and toxicity levels of selected medicinal plants. In order to achieve these goals, relevant samples were collected and screened using an array of microbiological, serological, molecular and phytochemical methods, which would be espoused in the relevant chapters, presented hereunder. Key findings of the various chapters including their contributions to knowledge are highlighted. The studies are presented in eight chapters and each chapter, with the exception of chapter one (General Introduction and Literature Review) consists of an introduction, materials and methods, results, discussions, conclusions and references. Each chapter is therefore designed as a publishable unit. Chapter 1 gives an account of the background to the study and the literature review. The morphology, cultural characteristics, laboratory diagnosis, pathogenesis, antibiogram and clinical manifestations of H. influenzae and S. pneumoniae were reviewed. Furthermore, the activities of medicinal plants and their various applications in the management of infections in different countries, including their possible active compounds and toxicity levels were also explored in order to provide a suitable background for the study. Similar reviews were undertaken for molecular aspects of both pathogens as well as the activities of human serum samples against microbial infections. In Chapter 2 the prevalence and antibiotic resistance profiles of H. influenzae and, S. pneumoniae isolates from clinical samples of patients in Mthatha, Eastern Cape Province were investigated. Clinical samples were obtained randomly from individuals attending different hospitals in Mthatha district. Samples were analysed using the Kirby Bauer disk diffusion test (antibiotic susceptibility testing) and MIC breakpoints were determined using E-test strips. From a total of 475 clinical samples tested, 323 (68.0%) were positive for both H. influenzae and S. pneumoniae. Most of the positive isolates were obtained from children under 9 years. Out of 323 isolates, 187 (57.89%) were positive for H. influenzae and 136 (42.1%) were positive for S. pneumoniae. From 10 hospitals selected for sampling in this study, Mthatha General Hospital recorded the highest number of isolates, 42 (25.15%) and 31 (22.79%) of H. influenzae and S. pneumoniae positive isolates respectively, followed by Nelson Mandela Academic Hospital 33 (19.76%) and 26 (19.12%) respectively while ST. Patricks 8 (4.79%) recorded the least number of isolates for H. influenzae and Khotsong 4 (2.94%) recorded the least number of isolates for S. pneumoniae. Antibiotic susceptibility tests revealed Amoxicillin (MIC50, 0.125μg/ml) and Vancomycin (MIC50,0.12μg/ml) as the most effective antibiotics against S. pneumoniae isolates and Co-amoxiclav (MIC50,0.3µg/ml) and Cefuroxime (MIC50,0.15µg/ml) against H. influenzae isolates. These data highlight the need for education and to consider predominant resistance when choosing empiric therapies to treat bacterial infections. Chapter 3 was designed to investigate the virulence factors of H. influenzae and S. pneumoniae isolates from clinical specimens of patients with respiratory tract infections in Mthatha district, the Eastern Cape Province. PCR and sequencing methods were used to verify the genetic determinants responsible for virulence in H. influenzae and S. pneumoniae strains. Results indicated that, of the 187 H. influenzae isolates studied, 26 (13.9%) were typeable, positive by genotypic determination, while 161 (86.1%) were non typeable (NTHi) strains. On the other, out of the 136 S. pneumoniae isolates 24 (17.6%) were typeable while 112 (82.4%) were non typeable strains. All isolates tested contained the metS2 gene for both H. influenzae and S. pneumoniae. The phylogenetic clusters identified by maximum-parsimony analysis were also compared to the results of 16S rRNA sequences. Twenty five percent of none typeable strains were typed by 16S rRNA sequencing. The phylogenetic tree yielded 7.7% H. influenzae similarities while S. pneumoniae yielded 25% similarities with other typeable strains. The presence of genes coding for virulence in this study suggest a significant contribution of genes encoding for virulence to antimicrobial resistance among respiratory tract organisms studied. This study underlines the importance of understanding the virulence composition and diversity of pathogens for enhanced clinico-epidemiological monitoring and health care delivery. The findings will also provide a genetic foundation for future research into mechanisms of pathogenesis of H. influenzae and S. pneumoniae and may accelerate the development of safe and effective vaccines to prevent and control diseases caused by H. influenzae and S. pneumoniae. In Chapter 4, cytotoxic effects and safety profiles of extracts of active medicinal plants from the OR Tambo District Municipality in the Eastern Cape of South Africa were carried out. The most prominent families of medicinal plants (Solanacea and Euphorbiaceae) were used. Extracts of nine South African medicinal plants were screened for cytotoxic activities against MAGI CC5+ cells using MTT assay. Results indicated that nine plant extracts (methanolic and aqueous) used in the MTT assay revealed Herb 2 (Cyanthula inculata) as the most potent extract identified with activity of 1.4 Cc50 values of 25.6 mg/mL and induced over 50% of cell deaths, followed by herb 3 (Croton grattismus) and Herb 4 (Cassine trasvaalensis) with activity of 0.2 Cc50 values of 3.7 mg/mL each. The herbs that induced the least cell death, were herbs 5 (Capris tomentosa) and 7 (Hypoxis hemerocallidea), with the activity of 0.05 Cc50 values of 0.9 mg/mL each. Of the nine plant extracts 2(22%) exhibited minimal toxicity on MAGI cells and 7(77.8%) exhibited 50% toxicity. Two (22%) of the methanolic extracts exhibited anti-HIV1 IIIB activities and against Mycobacterium tuberculosis (TB) only one medicinal plant extract (Lysium inerme) exhibited 29% activity. Cytotoxicity tests will provide comprehensive reference data bases for the profiling and eventual considerations of medicinal plants as potential templates for drug designs and medical applications. In chapter 5 Chemical Components of the volatile and non-volatile extractives of Croton species and their microbial activities were screened. Isolation of the essential oils from the leaves of Croton pseudopulchellus and C. gratissimus from the Eastern Cape and KwaZulu-Natal Provinces in South Africa were performed using an all glass Clevenger apparatus according to the British Pharmacopeia method. The minimum inhibitory concentrations of the oils were assessed against the seven different standard strains of bacteria: H. influenzae, Bacillus pimitus, Staphylococcus aureus, S. pneumoniae, Escherichia coli, Klebsiella pneumoniae, Serratia marcescens and Entarobacter cloacae using micro dilution technique on a 96 well microtitre plate. Results showed golden to very light yellow oils obtained with percentage yield of 1.03 -1.25 respectively (w/w). Analysis of the oils was performed using Gas Chromatography and Gas Chromatography/Mass Spectrophotometry. The leaf oil of Croton pseudopulchellus had germacrene (24.2%),β-phellandrene (17.4%), myrcene (13.4%) and β-caryophyllene (11.4%) as the prominent compounds identified in the oil. The chemical composition of the leaf oil of C. gratissimus was characterized by sabinene (14.6%), β-phellandrene (12.3%), α-phellandrene (10.7%), α-pinene (6.0%) and germacrene D (5.9%). Chemical profiles of the essential oils of Croton species reported in literatures are specific to their geographical location. The oils from C. pseudopulchellus and C. grattisimus were found to have significant antibacterial activities and therefore could be used as natural antimicrobial agents for the treatment of several infectious diseases caused by pathogenic and antibiotic resistant organisms. Chapters 6 and 7 were designed to isolate two bioactive compounds from the stem bark of Lycium inerme and the leaves of Croton grattisimus and were screened for their biological activities against H. influenzae and S. pneumoniae. A qualitative phytochemical screening and bioassay of the plants extracts was carried out. Antimicrobial screening was by broth microdilution and bioautography. Bioassay results showed that compounds with Rf –values between 0.67 to 0.80 were very active against H. influenzae and S. pneumoniae. However, the most active of these compounds was observed at 0.70 for H. influenzae and 0.69 for S. pneumoniae from the dichloromethane extract. Column chromatography, Preparative Thin Layer Chromatography (PTLC) and Sephadex LH20 were used for isolation, sample clean-up and purification of this extract. Two active compounds: a coumarin (7-hydroxy-6-methoxy-coumarin) and two triterpenoids, Ursolic acid (3-oxo-19-hydroxyl-6-methoxylpomolic acid) and Moronic acid (3-oxoolean-12-en-28-oic acid) were isolated from the dichloromethane fraction. The presence of Coumarins and Terpenoids in this herb was observed from the TLC fingerprints. NMR spectroscopic methods were used for the structural elucidation of the active compounds while the GC-MS was used to determine the presence of essential oils from volatile samples obtained from the leaves of C. grattisimus and L. inerme. C. grattisimus extracts possess strong free radicals with scavenging, antimicrobial and antifungal activities; therefore, further studies are needed to determine their efficacies in vivo or clinical usefulness. L. inerme stem bark can therefore be used as a source of alternative medicine or new pharmaceutical and health care product or as a starting material for synthesis of drugs. In chapter 8, general conclusions and perspectives of various parts of the findings were captured. The multi-drug resistance was observed among the emerging respiratory tract bacterial pathogens. It was recommended that measures should be put in place to control the spread of drug resistance in pathogens through improved and standardized laboratory practices, proper and regular surveillance to help guide against the indiscriminate use of antibiotics in empirical treatment. The recognition but cautious use of medicinal plants as alternative sources of therapies and a probable means to solve the emerging resistance problem was recommended. Improved standard of hygiene in hospital settings and the communities is important to prevent the spread of infections. The thesis provides a novel reference document on the genes coding for resistance, antibiograms and phylogenetic profiles of local isolates of H. influenzae and S. pneumoniae as well as the activities, active compounds and toxicity levels of medicinal plants investigated in an endeavour to effectively understand the possible therapeutic, molecular and epidemiological trends in respect of the designated pathogens. , Thesis (Phd) -- Faculty of Health Sciences, 2015
- Full Text:
- Date Issued: 2015-00
- Authors: Morobe, Isaac Christopher
- Date: 2015-00
- Subjects: Medicinal plants
- Language: English
- Type: Master's/Doctoral theses , text
- Identifier: http://hdl.handle.net/11260/6469 , vital:46340
- Description: H. influenzae and S. pneumoniae are important causes of community acquired respiratory tract infections including, pneumonia, acute sinusitis, otitis media, meningitis, bacteremia, sepsis, osteomyelitis, pericarditis, septic arthritis, endocarditis, peritonitis, cellulitis and brain abscesses. The ability to effectively treat bacterial infections has been compromised in recent years due to the acquisition of antibiotic resistance, particularly to β-lactam drugs. The increasing trends in antibiotic resistance have prompted incessant searches aimed at unraveling new effective sources for the management of microbial infections. Plant derived antimicrobial compounds that have no or minimal toxicity to host cells are considered candidates for developing new antimicrobial drugs. Safety is therefore critical in the development and formulation of such antimicrobials. In addition to studies on the structural elucidation of active compounds of selected medicinal plants and determination of their toxicity levels, concerted investigations on the molecular landscape of the designated bacteria, including genes coding for resistance and virulence, the phylogenetic profiles of isolates from different sources and the abilities of isolates to withstand the normal bactericidal activities of human serum samples from different blood groups are critical for a thorough understanding of the management, pathogenetic and clinico- epidemiological trajectories of the pathogens. Therefore, the aims of the various studies were to characterize local H. influenzae and S. pneumoniae isolates by serological and molecular methods; ascertain the antibiotic susceptibility profiles of isolates in order to provide updated data and guide clinicians and other health care workers on the empiric management of patients; determine genes coding for virulence and phylogenetic relatedness of isolates of H. influenzae and S. pneumoniae from diverse sources; ascertain the bactericidal activity of human serum samples from different blood groups against H. influenzae and S. pneumoniae and also to determine the activity of active compounds and toxicity levels of selected medicinal plants. In order to achieve these goals, relevant samples were collected and screened using an array of microbiological, serological, molecular and phytochemical methods, which would be espoused in the relevant chapters, presented hereunder. Key findings of the various chapters including their contributions to knowledge are highlighted. The studies are presented in eight chapters and each chapter, with the exception of chapter one (General Introduction and Literature Review) consists of an introduction, materials and methods, results, discussions, conclusions and references. Each chapter is therefore designed as a publishable unit. Chapter 1 gives an account of the background to the study and the literature review. The morphology, cultural characteristics, laboratory diagnosis, pathogenesis, antibiogram and clinical manifestations of H. influenzae and S. pneumoniae were reviewed. Furthermore, the activities of medicinal plants and their various applications in the management of infections in different countries, including their possible active compounds and toxicity levels were also explored in order to provide a suitable background for the study. Similar reviews were undertaken for molecular aspects of both pathogens as well as the activities of human serum samples against microbial infections. In Chapter 2 the prevalence and antibiotic resistance profiles of H. influenzae and, S. pneumoniae isolates from clinical samples of patients in Mthatha, Eastern Cape Province were investigated. Clinical samples were obtained randomly from individuals attending different hospitals in Mthatha district. Samples were analysed using the Kirby Bauer disk diffusion test (antibiotic susceptibility testing) and MIC breakpoints were determined using E-test strips. From a total of 475 clinical samples tested, 323 (68.0%) were positive for both H. influenzae and S. pneumoniae. Most of the positive isolates were obtained from children under 9 years. Out of 323 isolates, 187 (57.89%) were positive for H. influenzae and 136 (42.1%) were positive for S. pneumoniae. From 10 hospitals selected for sampling in this study, Mthatha General Hospital recorded the highest number of isolates, 42 (25.15%) and 31 (22.79%) of H. influenzae and S. pneumoniae positive isolates respectively, followed by Nelson Mandela Academic Hospital 33 (19.76%) and 26 (19.12%) respectively while ST. Patricks 8 (4.79%) recorded the least number of isolates for H. influenzae and Khotsong 4 (2.94%) recorded the least number of isolates for S. pneumoniae. Antibiotic susceptibility tests revealed Amoxicillin (MIC50, 0.125μg/ml) and Vancomycin (MIC50,0.12μg/ml) as the most effective antibiotics against S. pneumoniae isolates and Co-amoxiclav (MIC50,0.3µg/ml) and Cefuroxime (MIC50,0.15µg/ml) against H. influenzae isolates. These data highlight the need for education and to consider predominant resistance when choosing empiric therapies to treat bacterial infections. Chapter 3 was designed to investigate the virulence factors of H. influenzae and S. pneumoniae isolates from clinical specimens of patients with respiratory tract infections in Mthatha district, the Eastern Cape Province. PCR and sequencing methods were used to verify the genetic determinants responsible for virulence in H. influenzae and S. pneumoniae strains. Results indicated that, of the 187 H. influenzae isolates studied, 26 (13.9%) were typeable, positive by genotypic determination, while 161 (86.1%) were non typeable (NTHi) strains. On the other, out of the 136 S. pneumoniae isolates 24 (17.6%) were typeable while 112 (82.4%) were non typeable strains. All isolates tested contained the metS2 gene for both H. influenzae and S. pneumoniae. The phylogenetic clusters identified by maximum-parsimony analysis were also compared to the results of 16S rRNA sequences. Twenty five percent of none typeable strains were typed by 16S rRNA sequencing. The phylogenetic tree yielded 7.7% H. influenzae similarities while S. pneumoniae yielded 25% similarities with other typeable strains. The presence of genes coding for virulence in this study suggest a significant contribution of genes encoding for virulence to antimicrobial resistance among respiratory tract organisms studied. This study underlines the importance of understanding the virulence composition and diversity of pathogens for enhanced clinico-epidemiological monitoring and health care delivery. The findings will also provide a genetic foundation for future research into mechanisms of pathogenesis of H. influenzae and S. pneumoniae and may accelerate the development of safe and effective vaccines to prevent and control diseases caused by H. influenzae and S. pneumoniae. In Chapter 4, cytotoxic effects and safety profiles of extracts of active medicinal plants from the OR Tambo District Municipality in the Eastern Cape of South Africa were carried out. The most prominent families of medicinal plants (Solanacea and Euphorbiaceae) were used. Extracts of nine South African medicinal plants were screened for cytotoxic activities against MAGI CC5+ cells using MTT assay. Results indicated that nine plant extracts (methanolic and aqueous) used in the MTT assay revealed Herb 2 (Cyanthula inculata) as the most potent extract identified with activity of 1.4 Cc50 values of 25.6 mg/mL and induced over 50% of cell deaths, followed by herb 3 (Croton grattismus) and Herb 4 (Cassine trasvaalensis) with activity of 0.2 Cc50 values of 3.7 mg/mL each. The herbs that induced the least cell death, were herbs 5 (Capris tomentosa) and 7 (Hypoxis hemerocallidea), with the activity of 0.05 Cc50 values of 0.9 mg/mL each. Of the nine plant extracts 2(22%) exhibited minimal toxicity on MAGI cells and 7(77.8%) exhibited 50% toxicity. Two (22%) of the methanolic extracts exhibited anti-HIV1 IIIB activities and against Mycobacterium tuberculosis (TB) only one medicinal plant extract (Lysium inerme) exhibited 29% activity. Cytotoxicity tests will provide comprehensive reference data bases for the profiling and eventual considerations of medicinal plants as potential templates for drug designs and medical applications. In chapter 5 Chemical Components of the volatile and non-volatile extractives of Croton species and their microbial activities were screened. Isolation of the essential oils from the leaves of Croton pseudopulchellus and C. gratissimus from the Eastern Cape and KwaZulu-Natal Provinces in South Africa were performed using an all glass Clevenger apparatus according to the British Pharmacopeia method. The minimum inhibitory concentrations of the oils were assessed against the seven different standard strains of bacteria: H. influenzae, Bacillus pimitus, Staphylococcus aureus, S. pneumoniae, Escherichia coli, Klebsiella pneumoniae, Serratia marcescens and Entarobacter cloacae using micro dilution technique on a 96 well microtitre plate. Results showed golden to very light yellow oils obtained with percentage yield of 1.03 -1.25 respectively (w/w). Analysis of the oils was performed using Gas Chromatography and Gas Chromatography/Mass Spectrophotometry. The leaf oil of Croton pseudopulchellus had germacrene (24.2%),β-phellandrene (17.4%), myrcene (13.4%) and β-caryophyllene (11.4%) as the prominent compounds identified in the oil. The chemical composition of the leaf oil of C. gratissimus was characterized by sabinene (14.6%), β-phellandrene (12.3%), α-phellandrene (10.7%), α-pinene (6.0%) and germacrene D (5.9%). Chemical profiles of the essential oils of Croton species reported in literatures are specific to their geographical location. The oils from C. pseudopulchellus and C. grattisimus were found to have significant antibacterial activities and therefore could be used as natural antimicrobial agents for the treatment of several infectious diseases caused by pathogenic and antibiotic resistant organisms. Chapters 6 and 7 were designed to isolate two bioactive compounds from the stem bark of Lycium inerme and the leaves of Croton grattisimus and were screened for their biological activities against H. influenzae and S. pneumoniae. A qualitative phytochemical screening and bioassay of the plants extracts was carried out. Antimicrobial screening was by broth microdilution and bioautography. Bioassay results showed that compounds with Rf –values between 0.67 to 0.80 were very active against H. influenzae and S. pneumoniae. However, the most active of these compounds was observed at 0.70 for H. influenzae and 0.69 for S. pneumoniae from the dichloromethane extract. Column chromatography, Preparative Thin Layer Chromatography (PTLC) and Sephadex LH20 were used for isolation, sample clean-up and purification of this extract. Two active compounds: a coumarin (7-hydroxy-6-methoxy-coumarin) and two triterpenoids, Ursolic acid (3-oxo-19-hydroxyl-6-methoxylpomolic acid) and Moronic acid (3-oxoolean-12-en-28-oic acid) were isolated from the dichloromethane fraction. The presence of Coumarins and Terpenoids in this herb was observed from the TLC fingerprints. NMR spectroscopic methods were used for the structural elucidation of the active compounds while the GC-MS was used to determine the presence of essential oils from volatile samples obtained from the leaves of C. grattisimus and L. inerme. C. grattisimus extracts possess strong free radicals with scavenging, antimicrobial and antifungal activities; therefore, further studies are needed to determine their efficacies in vivo or clinical usefulness. L. inerme stem bark can therefore be used as a source of alternative medicine or new pharmaceutical and health care product or as a starting material for synthesis of drugs. In chapter 8, general conclusions and perspectives of various parts of the findings were captured. The multi-drug resistance was observed among the emerging respiratory tract bacterial pathogens. It was recommended that measures should be put in place to control the spread of drug resistance in pathogens through improved and standardized laboratory practices, proper and regular surveillance to help guide against the indiscriminate use of antibiotics in empirical treatment. The recognition but cautious use of medicinal plants as alternative sources of therapies and a probable means to solve the emerging resistance problem was recommended. Improved standard of hygiene in hospital settings and the communities is important to prevent the spread of infections. The thesis provides a novel reference document on the genes coding for resistance, antibiograms and phylogenetic profiles of local isolates of H. influenzae and S. pneumoniae as well as the activities, active compounds and toxicity levels of medicinal plants investigated in an endeavour to effectively understand the possible therapeutic, molecular and epidemiological trends in respect of the designated pathogens. , Thesis (Phd) -- Faculty of Health Sciences, 2015
- Full Text:
- Date Issued: 2015-00
Medicinal properties of Moringa (Moringa Oleifera Lam) leaves and the effect of its use as a supplement on goat growth performance and meat characteristics
- Moyo, Busani https://orcid.org/0000-0001-7002-7266
- Authors: Moyo, Busani https://orcid.org/0000-0001-7002-7266
- Date: 2011-09
- Subjects: Moringa , Medicinal plants
- Language: English
- Type: Doctoral theses , text
- Identifier: http://hdl.handle.net/10353/24376 , vital:62662
- Description: The main objective of the study was to determine if feeding goats with Moringa oleifera leaves would lead to an increase in productivity and in value of the meat. The proximate, van Soet, atomic absorption spectrophotometric and soxhlet extraction methods were used to determine the nutritional value M. oleifera leaves of the South African. The in-vitro antimicrobial screening methods were used to determine antimicrobial activities M. oleifera extracts while in vitro and invivo models were used to determine the antioxidant activities of M. oleifera leaves. An evaluation of the potential of M. oleifera leaf meal as a feed supplement in terms of its effect on helminth load, goat growth performance, carcass characteristics, meat quality attributes, nutritional and consumer sensory characteristics of goat meat was done. A total of 24, eight month old goats were randomly allocated to dietary treatments of M. oleifera leaf meal (MOL), sunflower seed cake (SC) and GH (grass hay) which was the control. All the groups were fed on basal diet of grass hay ad libitum and 200g wheat bran per head per day. The MOL group was given an additional 200 g of dried M. oleifera leaves while the SC group was offered 170 g sunflower seed cake per head/day. The study showed that the dried leaves had crude protein levels of 30.3 percent, polyunsaturated fatty acids (52.21 percent), Saturated fatty acids (43.31), n-3 (44.57 percent), n-6 (7.64 percent), 19 amino acids, vitamin E (77 mg/100 g) and Beta-carotene (18.5 mg/100 g). The M. oleifera leaf extracts showed antibacterial activities against Escherichia coli, Enterobacter cloace, Proteus vulgaris, Staphylococcus aureus and Micrococcus kristinae. The supplementation of goats with MOL and SC resulted in decreased feacal larval count and lower Haemonchus contortus, Trichostrongylus colubriforms and Oesophagastum columbianum worm burdens than those in the non-supplemented goats. Goats supplemented with SC and MOL had higher average daily weight gain and heavier carcasses than those in the GH group. Higher pH1 scores were observed in chevon from GH diet than the supplemented ones. The MOL and SC supplemented goats had chevon with higher values for lightness (L*) 24 hr post-mortem than the one from the GH group. The redness (a*) values of chevon 24 hr post mortem was highest in MOL supplemented goats. Warner Bratzler shear force (WBSF) values of SC (30.1 N) and MOL (29.8 N) supplemented goats were lower than those from GH diet (32.6 N). Chevon from goats fed GH diet had significantly higher cooking losses (29.5 percent) than that from MOL (25.4 percent) and SC (25.6 percent) fed groups. It was observed that chevon from MOL and SC supplemented groups had higher crude protein (23.57 and 22.95 percent, respectively) than the one from the GH group (21.20 percent). Cholesterol levels were higher in chevon from SC (42.84) supplemented goats than those from MOL (38.76) and GH (35.63 mg). Chevon from GH and MOL group had higher (P < 0.05) proportions of PUFA, n-3, PUFA/SFA ratio and lower n-6/n-3 ratio. Mean consumer scores for first bite, aroma, flavour and juiceness were higher in the MOL group than in the GH group (P < 0.05). The acetone extract exhibited higher concentrations of total flavonoids, flavonols, phenolics. The acetone extracts depicted higher percentage inhibition against DPPH, ABTS and nitric oxide radicals which were comparable with reference antioxidant (vitamin C and BHT). The M. oleifera leaf meal increased the antioxidant activity of GSH, SOD and catalase. Moringa oleifera leaves also exhibited medicinal properties by having anthelmintic, antibacterial activities and showed antioxidant properties. It was also observed that protein supplementation improved the animal growth performance, the physico-chemical characteristics, nutritional and fatty acids composition of meat hence meeting the consumer needs. , Thesis (PhD) -- Faculty of Science and Agriculture, 2011
- Full Text:
- Date Issued: 2011-09
- Authors: Moyo, Busani https://orcid.org/0000-0001-7002-7266
- Date: 2011-09
- Subjects: Moringa , Medicinal plants
- Language: English
- Type: Doctoral theses , text
- Identifier: http://hdl.handle.net/10353/24376 , vital:62662
- Description: The main objective of the study was to determine if feeding goats with Moringa oleifera leaves would lead to an increase in productivity and in value of the meat. The proximate, van Soet, atomic absorption spectrophotometric and soxhlet extraction methods were used to determine the nutritional value M. oleifera leaves of the South African. The in-vitro antimicrobial screening methods were used to determine antimicrobial activities M. oleifera extracts while in vitro and invivo models were used to determine the antioxidant activities of M. oleifera leaves. An evaluation of the potential of M. oleifera leaf meal as a feed supplement in terms of its effect on helminth load, goat growth performance, carcass characteristics, meat quality attributes, nutritional and consumer sensory characteristics of goat meat was done. A total of 24, eight month old goats were randomly allocated to dietary treatments of M. oleifera leaf meal (MOL), sunflower seed cake (SC) and GH (grass hay) which was the control. All the groups were fed on basal diet of grass hay ad libitum and 200g wheat bran per head per day. The MOL group was given an additional 200 g of dried M. oleifera leaves while the SC group was offered 170 g sunflower seed cake per head/day. The study showed that the dried leaves had crude protein levels of 30.3 percent, polyunsaturated fatty acids (52.21 percent), Saturated fatty acids (43.31), n-3 (44.57 percent), n-6 (7.64 percent), 19 amino acids, vitamin E (77 mg/100 g) and Beta-carotene (18.5 mg/100 g). The M. oleifera leaf extracts showed antibacterial activities against Escherichia coli, Enterobacter cloace, Proteus vulgaris, Staphylococcus aureus and Micrococcus kristinae. The supplementation of goats with MOL and SC resulted in decreased feacal larval count and lower Haemonchus contortus, Trichostrongylus colubriforms and Oesophagastum columbianum worm burdens than those in the non-supplemented goats. Goats supplemented with SC and MOL had higher average daily weight gain and heavier carcasses than those in the GH group. Higher pH1 scores were observed in chevon from GH diet than the supplemented ones. The MOL and SC supplemented goats had chevon with higher values for lightness (L*) 24 hr post-mortem than the one from the GH group. The redness (a*) values of chevon 24 hr post mortem was highest in MOL supplemented goats. Warner Bratzler shear force (WBSF) values of SC (30.1 N) and MOL (29.8 N) supplemented goats were lower than those from GH diet (32.6 N). Chevon from goats fed GH diet had significantly higher cooking losses (29.5 percent) than that from MOL (25.4 percent) and SC (25.6 percent) fed groups. It was observed that chevon from MOL and SC supplemented groups had higher crude protein (23.57 and 22.95 percent, respectively) than the one from the GH group (21.20 percent). Cholesterol levels were higher in chevon from SC (42.84) supplemented goats than those from MOL (38.76) and GH (35.63 mg). Chevon from GH and MOL group had higher (P < 0.05) proportions of PUFA, n-3, PUFA/SFA ratio and lower n-6/n-3 ratio. Mean consumer scores for first bite, aroma, flavour and juiceness were higher in the MOL group than in the GH group (P < 0.05). The acetone extract exhibited higher concentrations of total flavonoids, flavonols, phenolics. The acetone extracts depicted higher percentage inhibition against DPPH, ABTS and nitric oxide radicals which were comparable with reference antioxidant (vitamin C and BHT). The M. oleifera leaf meal increased the antioxidant activity of GSH, SOD and catalase. Moringa oleifera leaves also exhibited medicinal properties by having anthelmintic, antibacterial activities and showed antioxidant properties. It was also observed that protein supplementation improved the animal growth performance, the physico-chemical characteristics, nutritional and fatty acids composition of meat hence meeting the consumer needs. , Thesis (PhD) -- Faculty of Science and Agriculture, 2011
- Full Text:
- Date Issued: 2011-09
African traditional medicine-antiretroviral interactions : effects of Sutherlandia frutescens on the pharmacokinetics of Atazanavir
- Authors: Müller, Adrienne Carmel
- Date: 2011 , 2011-03-28
- Subjects: Antiretroviral agents , Medicinal plants , Traditional medicine , AIDS (Disease) -- Treatment , HIV infections -- Drug therapy , Drug interactions , Pharmacokinetics
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:3859 , http://hdl.handle.net/10962/d1013373
- Description: In response to the urgent call for investigations into antiretroviral (ARV)-African traditional medicine (ATM) interactions, this research was undertaken to ascertain whether chronic administration of the ATM, Sutherlandia frutescens (SF) may alter the bioavailability of the protease inhibitor (PI), atazanavir (ATV), which may impact on the safety or efficacy of the ARV. Prior to investigating a potential interaction between ATV and SF in vitro and in vivo, a high performance liquid chromatography method with ultraviolet detection (HPLC-UV) was developed and validated for the bioanalysis of ATV in human plasma and liver microsomes. An improved and efficient analytical method with minimal use of solvents and short run time was achieved in comparison to methods published in the literature. In addition, the method was selective, linear, accurate and precise for quantitative analysis of ATV in these studies. Molecular docking studies were conducted to compare the binding modes and affinities of ATV and two major SF constituents, Sutherlandioside B and Sutherlandin C, with the efflux transporter, P-glycoprotein (P-gp) and the CYP450 isoenzyme, CYP3A4 to determine the potential for these phytochemicals to competitively inhibit the binding of ATV to these two proteins, which are mediators of absorption and metabolism. These studies revealed that modulation of P-gp transport of ATV by Sutherlandioside B and Sutherlandin C was not likely to occur via competitive inhibition. The results further indicated that weak competitive inhibition of CYP3A4 may possibly occur in the presence of either of these two SF constituents. The Caco-2 cell line was used as an in vitro model of human intestinal absorption. Accumulation studies in these cells were conducted to ascertain whether extracts and constituents of SF have the ability to alter the absorption of ATV. The results showed that the aqueous extract of SF significantly reduced ATV accumulation, suggesting decreased ATV absorption, whilst a triterpenoid glycoside fraction isolated from SF exhibited an opposing effect. Analogous responses were elicited by the aqueous extract and a triterpenoid glycoside fraction in similar accumulation studies in P-gp overexpressing Madin–Darby Canine Kidney Strain II cells (MDCKII-MDR1), which signified that the effects of this extract and component on ATV transport in the Caco-2 cells were P-gp-mediated. The quantitative analysis of ATV in human liver microsomes after co-incubation with extracts and components of SF was conducted to determine the effects of SF on the metabolism of ATV. The aqueous and methanolic extracts of SF inhibited ATV metabolism, whilst the triterpenoid glycoside fraction had a converse effect. Analogous effects by the extracts were demonstrated in experiments conducted in CYP3A4-transfected microsomes, suggesting that the inhibition of ATV metabolism in the liver microsomes by these SF extracts was CYP3A4-mediated. A combination of Sutherlandiosides C and D also inhibited CYP3A4-mediated ATV metabolism, which was in contrast to the response elicited by the triterpenoid fraction in the liver microsomes, where other unidentified compounds, shown to be present therein, may have contributed to the activation of ATV metabolism. The in vitro studies revealed the potential for SF to alter the bioavailability of ATV, therefore a clinical study in which the effect of a multiple dose regimen of SF on the pharmacokinetics (PK) of a single dose of ATV was conducted in healthy male volunteers. The statistical analysis showed that the 90 % confidence intervals around the geometric mean ratios (ATV + SF/ATV alone) for both Cmax and AUC0-24 hours, fell well below the lower limit of the "no-effect" boundary of 0.8 – 1.25, implying that the bioavailability of ATV was significantly reduced in this cohort of subjects. It may thus be concluded that if the reduction in bioavailability observed in this clinical study is found to be clinically relevant, co-administration of SF commercial dosage forms and ATV in HIV/AIDS patients may potentially result in subtherapeutic ATV levels, which may in turn contribute to ATV resistance and/or treatment failure. This research has therefore highlighted the potential risk for toxicity or lack of efficacy of ARV regimens which may result when ATMs and PIs are used concurrently and that patients and health care practitioners alike should be aware of these perils.
- Full Text:
- Date Issued: 2011
- Authors: Müller, Adrienne Carmel
- Date: 2011 , 2011-03-28
- Subjects: Antiretroviral agents , Medicinal plants , Traditional medicine , AIDS (Disease) -- Treatment , HIV infections -- Drug therapy , Drug interactions , Pharmacokinetics
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:3859 , http://hdl.handle.net/10962/d1013373
- Description: In response to the urgent call for investigations into antiretroviral (ARV)-African traditional medicine (ATM) interactions, this research was undertaken to ascertain whether chronic administration of the ATM, Sutherlandia frutescens (SF) may alter the bioavailability of the protease inhibitor (PI), atazanavir (ATV), which may impact on the safety or efficacy of the ARV. Prior to investigating a potential interaction between ATV and SF in vitro and in vivo, a high performance liquid chromatography method with ultraviolet detection (HPLC-UV) was developed and validated for the bioanalysis of ATV in human plasma and liver microsomes. An improved and efficient analytical method with minimal use of solvents and short run time was achieved in comparison to methods published in the literature. In addition, the method was selective, linear, accurate and precise for quantitative analysis of ATV in these studies. Molecular docking studies were conducted to compare the binding modes and affinities of ATV and two major SF constituents, Sutherlandioside B and Sutherlandin C, with the efflux transporter, P-glycoprotein (P-gp) and the CYP450 isoenzyme, CYP3A4 to determine the potential for these phytochemicals to competitively inhibit the binding of ATV to these two proteins, which are mediators of absorption and metabolism. These studies revealed that modulation of P-gp transport of ATV by Sutherlandioside B and Sutherlandin C was not likely to occur via competitive inhibition. The results further indicated that weak competitive inhibition of CYP3A4 may possibly occur in the presence of either of these two SF constituents. The Caco-2 cell line was used as an in vitro model of human intestinal absorption. Accumulation studies in these cells were conducted to ascertain whether extracts and constituents of SF have the ability to alter the absorption of ATV. The results showed that the aqueous extract of SF significantly reduced ATV accumulation, suggesting decreased ATV absorption, whilst a triterpenoid glycoside fraction isolated from SF exhibited an opposing effect. Analogous responses were elicited by the aqueous extract and a triterpenoid glycoside fraction in similar accumulation studies in P-gp overexpressing Madin–Darby Canine Kidney Strain II cells (MDCKII-MDR1), which signified that the effects of this extract and component on ATV transport in the Caco-2 cells were P-gp-mediated. The quantitative analysis of ATV in human liver microsomes after co-incubation with extracts and components of SF was conducted to determine the effects of SF on the metabolism of ATV. The aqueous and methanolic extracts of SF inhibited ATV metabolism, whilst the triterpenoid glycoside fraction had a converse effect. Analogous effects by the extracts were demonstrated in experiments conducted in CYP3A4-transfected microsomes, suggesting that the inhibition of ATV metabolism in the liver microsomes by these SF extracts was CYP3A4-mediated. A combination of Sutherlandiosides C and D also inhibited CYP3A4-mediated ATV metabolism, which was in contrast to the response elicited by the triterpenoid fraction in the liver microsomes, where other unidentified compounds, shown to be present therein, may have contributed to the activation of ATV metabolism. The in vitro studies revealed the potential for SF to alter the bioavailability of ATV, therefore a clinical study in which the effect of a multiple dose regimen of SF on the pharmacokinetics (PK) of a single dose of ATV was conducted in healthy male volunteers. The statistical analysis showed that the 90 % confidence intervals around the geometric mean ratios (ATV + SF/ATV alone) for both Cmax and AUC0-24 hours, fell well below the lower limit of the "no-effect" boundary of 0.8 – 1.25, implying that the bioavailability of ATV was significantly reduced in this cohort of subjects. It may thus be concluded that if the reduction in bioavailability observed in this clinical study is found to be clinically relevant, co-administration of SF commercial dosage forms and ATV in HIV/AIDS patients may potentially result in subtherapeutic ATV levels, which may in turn contribute to ATV resistance and/or treatment failure. This research has therefore highlighted the potential risk for toxicity or lack of efficacy of ARV regimens which may result when ATMs and PIs are used concurrently and that patients and health care practitioners alike should be aware of these perils.
- Full Text:
- Date Issued: 2011
Antibacterial properties of the methanol extract of helichrysum pedunculatum
- Authors: Ncube, Nqobile S
- Date: 2008
- Subjects: Medicinal plants , Methanol , Helichrysum
- Language: English
- Type: Thesis , Masters , MSc (Microbiology)
- Identifier: vital:11241 , http://hdl.handle.net/10353/461 , Medicinal plants , Methanol , Helichrysum
- Description: The methanol extract of Helichrisum pedunculatum was screened for antimicrobial activity up to a concentration of 5 mg/ml using the agar dilution technique. A number of test bacterial isolates, comprising both Gram negative and Gram positive organisms were susceptible to the crude extract of the plant. The minimum inhibitory concentrations (MICs) of the extract ranged between 1 and 5 mg/ml for the susceptible organisms. The MICs of the selected antibiotics, chloramphenicol and penicillin, ranged between 2 and 4 mg/L, and 2 and 32 mg/L respectively against Bacillus cereus, Proteus vulgaris and Staphylococcus aureus OKOH1. Bactericidal activity was determined by the time kill assay. The methanol extract of the plant was not bactericidal at 1 × MIC for B. cereus, P. vulgaris and Staph. aureus OKOH1. At 2 × MIC the extract was bacteriostatic against B. cereus but bactericidal against P. vulgaris and Staph. aureus OKOH1. Combination studies were done at 1/2 × MIC, 1 × MIC and 2 × MIC of the plant extract with 1 × MIC of the antibiotics. Combinations of the plant extract and chloramphenicol resulted in mostly indifferent interactions against P. vulgaris and Staph. aureus OKOH1 but synergistic interactions at higher concentration of the plant extract for B. cereus. Penicillin combinations gave synergistic interactions at lower concentrations of the plant for P.vulgaris and Staph. aureus OKOH1 but was mostly indifferent for B. cereus.
- Full Text:
- Date Issued: 2008
- Authors: Ncube, Nqobile S
- Date: 2008
- Subjects: Medicinal plants , Methanol , Helichrysum
- Language: English
- Type: Thesis , Masters , MSc (Microbiology)
- Identifier: vital:11241 , http://hdl.handle.net/10353/461 , Medicinal plants , Methanol , Helichrysum
- Description: The methanol extract of Helichrisum pedunculatum was screened for antimicrobial activity up to a concentration of 5 mg/ml using the agar dilution technique. A number of test bacterial isolates, comprising both Gram negative and Gram positive organisms were susceptible to the crude extract of the plant. The minimum inhibitory concentrations (MICs) of the extract ranged between 1 and 5 mg/ml for the susceptible organisms. The MICs of the selected antibiotics, chloramphenicol and penicillin, ranged between 2 and 4 mg/L, and 2 and 32 mg/L respectively against Bacillus cereus, Proteus vulgaris and Staphylococcus aureus OKOH1. Bactericidal activity was determined by the time kill assay. The methanol extract of the plant was not bactericidal at 1 × MIC for B. cereus, P. vulgaris and Staph. aureus OKOH1. At 2 × MIC the extract was bacteriostatic against B. cereus but bactericidal against P. vulgaris and Staph. aureus OKOH1. Combination studies were done at 1/2 × MIC, 1 × MIC and 2 × MIC of the plant extract with 1 × MIC of the antibiotics. Combinations of the plant extract and chloramphenicol resulted in mostly indifferent interactions against P. vulgaris and Staph. aureus OKOH1 but synergistic interactions at higher concentration of the plant extract for B. cereus. Penicillin combinations gave synergistic interactions at lower concentrations of the plant for P.vulgaris and Staph. aureus OKOH1 but was mostly indifferent for B. cereus.
- Full Text:
- Date Issued: 2008
Chemical transformations and phytochemical studies of bioactive components from extracts of Rosmarinus officinalis L
- Authors: Okoh, Omobola Oluranti
- Date: 2010
- Subjects: Essences and essential oils , Rosmarinus , Lamiaceae , Solution (Chemistry) , Extractive distillation , Medicinal plants , Bioactive compounds
- Language: English
- Type: Thesis , Doctoral , PhD (Chemistry)
- Identifier: vital:11331 , http://hdl.handle.net/10353/354 , Essences and essential oils , Rosmarinus , Lamiaceae , Solution (Chemistry) , Extractive distillation , Medicinal plants , Bioactive compounds
- Description: Variations in the yield, chemical composition, antibacterial, and antioxidant properties of the essential oils of Rosmarinus officinalis L. cultivated in Alice, Eastern Cape of South Africa over a period of 12 months using the solvent-free microwave extraction and traditional hydrodistillation methods were evaluated. The GC-MS analyses of the essential oils revealed the presence of 33 compounds with 1,8-cineole, a-pinene, camphor, verbenone, bornyl acetate and camphene constituting about 80 percent of the oils throughout the period of investigation, with the solvent-free microwave extraction method generally yielding more of the major components than the hydrodistillation method. Each of the major components of the oils varied in quantity and quality of yield at different periods of the year. The method of extraction and time of harvest are of importance to the quantity and quality of essential oil of Rosmarinus officinalis. Higher amounts of oxygenated monoterpenes such as borneol, camphor, terpene- 4-ol, linalool, a-terpeneol were present in the oil of SFME in comparison with HD. However, HD oil contained more monoterpene hydrocarbons such as a-pinene, camphene, β-pinene, myrcene, a-phellanderene, 1,8-cineole, trans- β-ocimene, γ-teprinene, and cis-sabinene hydrate than SFME extracted oil. Accumulation of monoterpene alcohols and ketones was observed during maturation process of Rosmarinus leaves. Quantitative evaluation of antibacterial activity, minimum inhibitory concentration values were determined using a serial microplate dilution method. The essential oils obtained using both methods of extraction were active against all the bacteria tested at a concentration of 10 mg mL-1. The minimum inhibitory concentrations for the SFME extracted oils ranged between 0.23 and 1.88 mg mL-1, while those of the HD extracted oils varied between 0.94 and 7.5 mg mL-1, thus suggesting that the oil obtained by solvent free microwave extraction was more active against bacteria than the oil obtained through hydrodistillation. The antioxidant and free radical scavenging activity of the obtained oils were tested by means of 1,1-diphenyl-2-picrylhydrazyl radical (DPPH+) assay and β- carotene bleaching test. In the DPPH+ assay, while the free radical scavenging activity of the oil obtained by SFME method showed percentage inhibitions of between 48.8 percent and 67 percent, the HD derived oil showed inhibitions of between 52.2 percent and 65.30 percent at concentrations of 0.33, 0.50 and 1.0 mg mL-1, respectively. In the β-carotene bleaching assay, the percentage inhibition increased with increasing concentration of both oils with a higher antioxidant activity of the oil obtained through the SFME than the HD method. Thin layer chromatography (TLC) was used to analyze the chemical composition of the extracts using three eluent solvent systems of varying polarities i. e. CEF, BEA and EMW and sprayed with vanillin-sulfuric acid. The chemical composition of the different extracts was similar with the exception of methanol and water extracts which had only one or two visible compounds after treating with vanillin-spray reagent. To evaluate the number of antibacterial compounds present in the fractions, bioautography was used against two most important nosocomial microorganisms. S. aureus (Gram positive) and E. coli (Gram negative). Nearly all the crude serial extraction fractions contained compounds that inhibited the growth of E. coli. The hexane extract had the most lines of inhibition followed by ethyl acetate. Bioassay-guided fractionation against E. coli was used to isolate antibacterial compounds. The largest number of antibacterial compounds occurred in the hexane fraction. Furthermore we tried to complete the characterization by extracting and studying other biologically important plant metabolites such as phenolic compounds to evaluate the antioxidant capacity of Rosmarinus extracts.
- Full Text:
- Date Issued: 2010
- Authors: Okoh, Omobola Oluranti
- Date: 2010
- Subjects: Essences and essential oils , Rosmarinus , Lamiaceae , Solution (Chemistry) , Extractive distillation , Medicinal plants , Bioactive compounds
- Language: English
- Type: Thesis , Doctoral , PhD (Chemistry)
- Identifier: vital:11331 , http://hdl.handle.net/10353/354 , Essences and essential oils , Rosmarinus , Lamiaceae , Solution (Chemistry) , Extractive distillation , Medicinal plants , Bioactive compounds
- Description: Variations in the yield, chemical composition, antibacterial, and antioxidant properties of the essential oils of Rosmarinus officinalis L. cultivated in Alice, Eastern Cape of South Africa over a period of 12 months using the solvent-free microwave extraction and traditional hydrodistillation methods were evaluated. The GC-MS analyses of the essential oils revealed the presence of 33 compounds with 1,8-cineole, a-pinene, camphor, verbenone, bornyl acetate and camphene constituting about 80 percent of the oils throughout the period of investigation, with the solvent-free microwave extraction method generally yielding more of the major components than the hydrodistillation method. Each of the major components of the oils varied in quantity and quality of yield at different periods of the year. The method of extraction and time of harvest are of importance to the quantity and quality of essential oil of Rosmarinus officinalis. Higher amounts of oxygenated monoterpenes such as borneol, camphor, terpene- 4-ol, linalool, a-terpeneol were present in the oil of SFME in comparison with HD. However, HD oil contained more monoterpene hydrocarbons such as a-pinene, camphene, β-pinene, myrcene, a-phellanderene, 1,8-cineole, trans- β-ocimene, γ-teprinene, and cis-sabinene hydrate than SFME extracted oil. Accumulation of monoterpene alcohols and ketones was observed during maturation process of Rosmarinus leaves. Quantitative evaluation of antibacterial activity, minimum inhibitory concentration values were determined using a serial microplate dilution method. The essential oils obtained using both methods of extraction were active against all the bacteria tested at a concentration of 10 mg mL-1. The minimum inhibitory concentrations for the SFME extracted oils ranged between 0.23 and 1.88 mg mL-1, while those of the HD extracted oils varied between 0.94 and 7.5 mg mL-1, thus suggesting that the oil obtained by solvent free microwave extraction was more active against bacteria than the oil obtained through hydrodistillation. The antioxidant and free radical scavenging activity of the obtained oils were tested by means of 1,1-diphenyl-2-picrylhydrazyl radical (DPPH+) assay and β- carotene bleaching test. In the DPPH+ assay, while the free radical scavenging activity of the oil obtained by SFME method showed percentage inhibitions of between 48.8 percent and 67 percent, the HD derived oil showed inhibitions of between 52.2 percent and 65.30 percent at concentrations of 0.33, 0.50 and 1.0 mg mL-1, respectively. In the β-carotene bleaching assay, the percentage inhibition increased with increasing concentration of both oils with a higher antioxidant activity of the oil obtained through the SFME than the HD method. Thin layer chromatography (TLC) was used to analyze the chemical composition of the extracts using three eluent solvent systems of varying polarities i. e. CEF, BEA and EMW and sprayed with vanillin-sulfuric acid. The chemical composition of the different extracts was similar with the exception of methanol and water extracts which had only one or two visible compounds after treating with vanillin-spray reagent. To evaluate the number of antibacterial compounds present in the fractions, bioautography was used against two most important nosocomial microorganisms. S. aureus (Gram positive) and E. coli (Gram negative). Nearly all the crude serial extraction fractions contained compounds that inhibited the growth of E. coli. The hexane extract had the most lines of inhibition followed by ethyl acetate. Bioassay-guided fractionation against E. coli was used to isolate antibacterial compounds. The largest number of antibacterial compounds occurred in the hexane fraction. Furthermore we tried to complete the characterization by extracting and studying other biologically important plant metabolites such as phenolic compounds to evaluate the antioxidant capacity of Rosmarinus extracts.
- Full Text:
- Date Issued: 2010
Variation in the essential oil composition of Calendula Officinalis L
- Authors: Okoh, Omobola Oluranti
- Date: 2008
- Subjects: Calendula (Genus) , Essences and essential oils , Medicinal plants , Calendula officinalis
- Language: English
- Type: Thesis , Masters , MSc (Chemistry)
- Identifier: vital:11334 , http://hdl.handle.net/10353/d1001150 , Calendula (Genus) , Essences and essential oils , Medicinal plants , Calendula officinalis
- Description: Variations in the yield, chemical composition, antibacterial, and antioxidant properties of the essential oils of Rosmarinus officinalis L. cultivated in Alice, Eastern Cape of South Africa over a period of 12 months using the solvent-free microwave extraction and traditional hydrodistillation methods were evaluated. The GC-MS analyses of the essential oils revealed the presence of 33 compounds with 1,8-cineole, a-pinene, camphor, verbenone, bornyl acetate and camphene constituting about 80 percent of the oils throughout the period of investigation, with the solvent-free microwave extraction method generally yielding more of the major components than the hydrodistillation method. Each of the major components of the oils varied in quantity and quality of yield at different periods of the year. The method of extraction and time of harvest are of importance to the quantity and quality of essential oil of Rosmarinus officinalis. Higher amounts of oxygenated monoterpenes such as borneol, camphor, terpene- 4-ol, linalool, a-terpeneol were present in the oil of SFME in comparison with HD. However, HD oil contained more monoterpene hydrocarbons such as a-pinene, camphene, β-pinene, myrcene, a-phellanderene, 1,8-cineole, trans- β-ocimene, γ-teprinene, and cis-sabinene hydrate than SFME extracted oil. Accumulation of monoterpene alcohols and ketones was observed during maturation process of Rosmarinus leaves. Quantitative evaluation of antibacterial activity, minimum inhibitory concentration values were determined using a serial microplate dilution method. The essential oils obtained using both methods of extraction were active against all the bacteria tested at a concentration of 10 mg mL-1. The minimum inhibitory concentrations for the SFME extracted oils ranged between 0.23 and 1.88 mg mL-1, while those of the HD extracted oils varied between 0.94 and 7.5 mg mL-1, thus suggesting that the oil obtained by solvent free microwave extraction was more active against bacteria than the oil obtained through hydrodistillation. The antioxidant and free radical scavenging activity of the obtained oils were tested by means of 1,1-diphenyl-2-picrylhydrazyl radical (DPPH+) assay and β- carotene bleaching test. In the DPPH+ assay, while the free radical scavenging activity of the oil obtained by SFME method showed percentage inhibitions of between 48.8 percent and 67 percent, the HD derived oil showed inhibitions of between 52.2 percent and 65.30 percent at concentrations of 0.33, 0.50 and 1.0 mg mL-1, respectively. In the β-carotene bleaching assay, the percentage inhibition increased with increasing concentration of both oils with a higher antioxidant activity of the oil obtained through the SFME than the HD method. Thin layer chromatography (TLC) was used to analyze the chemical composition of the extracts using three eluent solvent systems of varying polarities i. e. CEF, BEA and EMW and sprayed with vanillin-sulfuric acid. The chemical composition of the different extracts was similar with the exception of methanol and water extracts which had only one or two visible compounds after treating with vanillin-spray reagent. To evaluate the number of antibacterial compounds present in the fractions, bioautography was used against two most important nosocomial microorganisms. S. aureus (Gram positive) and E. coli (Gram negative). Nearly all the crude serial extraction fractions contained compounds that inhibited the growth of E. coli. The hexane extract had the most lines of inhibition followed by ethyl acetate. Bioassay-guided fractionation against E. coli was used to isolate antibacterial compounds. The largest number of antibacterial compounds occurred in the hexane fraction. Furthermore we tried to complete the characterization by extracting and studying other biologically important plant metabolites such as phenolic compounds to evaluate the antioxidant capacity of Rosmarinus extracts
- Full Text:
- Date Issued: 2008
- Authors: Okoh, Omobola Oluranti
- Date: 2008
- Subjects: Calendula (Genus) , Essences and essential oils , Medicinal plants , Calendula officinalis
- Language: English
- Type: Thesis , Masters , MSc (Chemistry)
- Identifier: vital:11334 , http://hdl.handle.net/10353/d1001150 , Calendula (Genus) , Essences and essential oils , Medicinal plants , Calendula officinalis
- Description: Variations in the yield, chemical composition, antibacterial, and antioxidant properties of the essential oils of Rosmarinus officinalis L. cultivated in Alice, Eastern Cape of South Africa over a period of 12 months using the solvent-free microwave extraction and traditional hydrodistillation methods were evaluated. The GC-MS analyses of the essential oils revealed the presence of 33 compounds with 1,8-cineole, a-pinene, camphor, verbenone, bornyl acetate and camphene constituting about 80 percent of the oils throughout the period of investigation, with the solvent-free microwave extraction method generally yielding more of the major components than the hydrodistillation method. Each of the major components of the oils varied in quantity and quality of yield at different periods of the year. The method of extraction and time of harvest are of importance to the quantity and quality of essential oil of Rosmarinus officinalis. Higher amounts of oxygenated monoterpenes such as borneol, camphor, terpene- 4-ol, linalool, a-terpeneol were present in the oil of SFME in comparison with HD. However, HD oil contained more monoterpene hydrocarbons such as a-pinene, camphene, β-pinene, myrcene, a-phellanderene, 1,8-cineole, trans- β-ocimene, γ-teprinene, and cis-sabinene hydrate than SFME extracted oil. Accumulation of monoterpene alcohols and ketones was observed during maturation process of Rosmarinus leaves. Quantitative evaluation of antibacterial activity, minimum inhibitory concentration values were determined using a serial microplate dilution method. The essential oils obtained using both methods of extraction were active against all the bacteria tested at a concentration of 10 mg mL-1. The minimum inhibitory concentrations for the SFME extracted oils ranged between 0.23 and 1.88 mg mL-1, while those of the HD extracted oils varied between 0.94 and 7.5 mg mL-1, thus suggesting that the oil obtained by solvent free microwave extraction was more active against bacteria than the oil obtained through hydrodistillation. The antioxidant and free radical scavenging activity of the obtained oils were tested by means of 1,1-diphenyl-2-picrylhydrazyl radical (DPPH+) assay and β- carotene bleaching test. In the DPPH+ assay, while the free radical scavenging activity of the oil obtained by SFME method showed percentage inhibitions of between 48.8 percent and 67 percent, the HD derived oil showed inhibitions of between 52.2 percent and 65.30 percent at concentrations of 0.33, 0.50 and 1.0 mg mL-1, respectively. In the β-carotene bleaching assay, the percentage inhibition increased with increasing concentration of both oils with a higher antioxidant activity of the oil obtained through the SFME than the HD method. Thin layer chromatography (TLC) was used to analyze the chemical composition of the extracts using three eluent solvent systems of varying polarities i. e. CEF, BEA and EMW and sprayed with vanillin-sulfuric acid. The chemical composition of the different extracts was similar with the exception of methanol and water extracts which had only one or two visible compounds after treating with vanillin-spray reagent. To evaluate the number of antibacterial compounds present in the fractions, bioautography was used against two most important nosocomial microorganisms. S. aureus (Gram positive) and E. coli (Gram negative). Nearly all the crude serial extraction fractions contained compounds that inhibited the growth of E. coli. The hexane extract had the most lines of inhibition followed by ethyl acetate. Bioassay-guided fractionation against E. coli was used to isolate antibacterial compounds. The largest number of antibacterial compounds occurred in the hexane fraction. Furthermore we tried to complete the characterization by extracting and studying other biologically important plant metabolites such as phenolic compounds to evaluate the antioxidant capacity of Rosmarinus extracts
- Full Text:
- Date Issued: 2008
Biological activities and mechanisms of action of two ethnobotanically selected South African medicinal plants on some bacteria associated with gastrointestinal infections
- Olajuyigbe, Olufunmiso Olusola https://orcid.org/0000-0002-7889-0416
- Authors: Olajuyigbe, Olufunmiso Olusola https://orcid.org/0000-0002-7889-0416
- Date: 2012-08
- Subjects: Medicinal plants , Herbs -- Therapeutic use , Gastrointestinal system
- Language: English
- Type: Doctoral theses , text
- Identifier: http://hdl.handle.net/10353/25439 , vital:64249
- Description: In this study, 36 plant species representing 24 families were found to be commonly used for the treatment of a variety of gastrointestinal disorders in Eastern Cape, South Africa. The family Fabaceae had the highest number of species. Out of these, 47.06percent were used in the treatment of dysentery alone while 46.15percent were used in the treatment of diarrhoea. Acacia mearnsii De Wild and Ziziphus mucronata subsp. mucronata Willd were selected for this research because they are extensively used in folkloric medicine in South Africa and there was lack of scientific reports that documented their biological activities. The phytochemical screening, antioxidant activities, in vitro antimicrobial activities, cytotoxicity, the synergistic potentials and mechanisms of actions of these plants were investigated. The phytochemical screening and the antioxidant activities of the two species showed that the quantity of the phenolic compounds, flavonoids and proanthocyanidins detected differ significantly in the various extracts. Of the aqueous, acetone, ethanolic and methanolic extracts of A. mearnsii, the ethanolic extract had the highest flavonoids while the acetone extract had the highest phenolic contents. The proanthocyanidins were highest in the methanol extract while aqueous extracts had the least phytochemicals. Aqueous extract showed the least ferric reducing power but methanol extract indicated the highest reducing power. The reducing power of the extracts was lower than those obtained from the reference standard such as butylated hydroxytoluene (BHT), rutin and ascorbic acid. 2,2’-azinobis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) diammonium salt showed that ethanol extract exhibited the highest antioxidant activity at the highest concentration tested. Also, 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay indicated that ethanol extract had the highest radical scavenging activity at the lowest concentration and the activities of all the extracts decreased with increase in their concentrations. In Z. mucronata subsp. mucronata, the phenolics were significantly higher than the flavonoids and proanthocyanidin contents in all the extracts investigated. The ethanol extract had the highest antioxidant activity, followed by the acetone extract while the aqueous extract was the least active. Reacting with ABTS, the 50percent inhibitory concentrations (IC50) were (0.0429 ± 0.04 mg/ml) for aqueous, (0.0317 ± 0.04 mg/ml) for acetone and (0.0306 ± 0.04 mg/ml) for ethanol extracts while they inhibited DPPH radical with 50percent inhibitory concentration (IC50) values of 0.0646 ± 0.02 mg/ml (aqueous), 0.0482 ± 0.02 mg/ml (acetone) and 0.0422 ± 0.03 mg/ml (ethanol). The investigation showed that a positive linear correlation existed between the total phenolic content and antioxidant activity of the extracts and that these plants have strong antioxidant property and free radical scavenging capability. The in vitro antibacterial activities of Acacia mearnsii and Z. mucronata subsp. mucronata showed that their minimum inhibitory concentrations ranged between 0.039 mg/ml and 1.25 mg/ml. With the exception of acetone extract of A. mearnsii having MICs greater than 1.0 mg/ml for Enterococcus faecalis ATCC 29212 and Bacillus subtilis KZN, all other isolates had MICs less than 0.7 mg/ml. In all the bacteria treated with Z. mucronata subsp. mucronata extracts, Enterobacter cloacae ATCC 13047 had MIC greater than 1 mg/ml in methanol extract, Enterococcus faecalis ATCC 29212 and Staphylococcus aureus ATCC 6538 had MICs greater than 1 mg/ml in acetone extract while all other isolates were highly susceptible to the different extracts of Z. mucronata subsp. mucronata and had MICs less than 0.7 mg/ml. While aqueous extract was as active as the alcoholic extracts in A. mearnsii, that of Z. mucronata had no effect. The ethanol extracts exhibited the highest degree of antibacterial activity in both plants. This study, also, showed that the antifungal activity of A. mearnsii ranging 0.3125 – 5.0 mg/ml was higher than those of the different extracts of Z. mucronata subsp. mucronata ranging 1.25 – 10.0 mg/ml. It is evident from the results of the brine shrimp lethality assay that the crude extracts of A. mearnsii with the LC50 equaled 112.36 µg/ml and having the highest levels of toxicity (100percent) death at 500 μg/ml was non toxic (LC50 > 100 μg/ml) while the LC50 for Z. mucronata subsp. mucronata equaled 90.27 µg/ml indicated a low level of toxicity. The effects of combining the crude extracts of these plants with eight antibiotics were investigated by means of checkerboard and agar diffusion methods. On using the methanol extract of A. mearnsii, the agar diffusion assay showed that extract-kanamycin combination had zones of inhibition ≥ 20 ± 1.0 mm in all the bacteria tested (100percent), followed by extract chloramphenicol (90percent) > extract-ciprofloxacin = extract-tetracycline (70percent) > extract amoxicillin (60percent) > extract-nalidixic acid (50percent) > extract-erythromycin (40percent) > extract metronidazole (20percent). The checkerboard showed synergistic interaction (61.25percent), additivity/indifference (23.75percent) and antagonistic (15percent) effects. I, therefore, concluded that the antibacterial potentials of the antibiotics were improved and combining natural products with antibiotic could be a potential source of resistance-modifying agents useful against multi-drug resistant bacteria. The influences of these extracts on the ultrastructures, elemental components, protein and lipid leakages of five different bacteria were determined as the possible mechanisms of action of the extracts investigated. The scanning electron microscopy indicated varied ultrastructural changes in the morphology of bacterial cells treated with the extracts. The X-ray microanalysis showed significant differences between the elemental contents of extract-treated and untreated bacteria while lipids and proteins were leaked to a great extent from the extract-treated bacterial strains in comparison with the untreated ones. The possible mechanisms of action of the extracts may include inhibition of a significant step in peptidoglycan assembly, inhibition of metabolic processes, disruption of cell wall and cell membranes resulting in the efflux of lipid and protein in all the bacteria tested. The possible mechanism of action involved in the lipid and protein leakages in the bacterial cells could be attributed to lipid peroxidation and protein oxidation owing to the antioxidant activities of the extracts that were active beyond the protective levels. I concluded that the morphological changes and the observed leakages showed rapid killing, significant membrane depolarization resulting in leakages and efflux of disintegrated cellular materials. In general, this study has justified the ethnotherapeutic importance of A. mearnsii and Z. mucronata subsp. mucronata in the treatment of microbial infections by indicating the possible mechanisms of action of the crude extracts on the tested bacteria. , Thesis (PhD) -- Faculty of Science and Agriculture, 2012
- Full Text:
- Date Issued: 2012-08
- Authors: Olajuyigbe, Olufunmiso Olusola https://orcid.org/0000-0002-7889-0416
- Date: 2012-08
- Subjects: Medicinal plants , Herbs -- Therapeutic use , Gastrointestinal system
- Language: English
- Type: Doctoral theses , text
- Identifier: http://hdl.handle.net/10353/25439 , vital:64249
- Description: In this study, 36 plant species representing 24 families were found to be commonly used for the treatment of a variety of gastrointestinal disorders in Eastern Cape, South Africa. The family Fabaceae had the highest number of species. Out of these, 47.06percent were used in the treatment of dysentery alone while 46.15percent were used in the treatment of diarrhoea. Acacia mearnsii De Wild and Ziziphus mucronata subsp. mucronata Willd were selected for this research because they are extensively used in folkloric medicine in South Africa and there was lack of scientific reports that documented their biological activities. The phytochemical screening, antioxidant activities, in vitro antimicrobial activities, cytotoxicity, the synergistic potentials and mechanisms of actions of these plants were investigated. The phytochemical screening and the antioxidant activities of the two species showed that the quantity of the phenolic compounds, flavonoids and proanthocyanidins detected differ significantly in the various extracts. Of the aqueous, acetone, ethanolic and methanolic extracts of A. mearnsii, the ethanolic extract had the highest flavonoids while the acetone extract had the highest phenolic contents. The proanthocyanidins were highest in the methanol extract while aqueous extracts had the least phytochemicals. Aqueous extract showed the least ferric reducing power but methanol extract indicated the highest reducing power. The reducing power of the extracts was lower than those obtained from the reference standard such as butylated hydroxytoluene (BHT), rutin and ascorbic acid. 2,2’-azinobis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) diammonium salt showed that ethanol extract exhibited the highest antioxidant activity at the highest concentration tested. Also, 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay indicated that ethanol extract had the highest radical scavenging activity at the lowest concentration and the activities of all the extracts decreased with increase in their concentrations. In Z. mucronata subsp. mucronata, the phenolics were significantly higher than the flavonoids and proanthocyanidin contents in all the extracts investigated. The ethanol extract had the highest antioxidant activity, followed by the acetone extract while the aqueous extract was the least active. Reacting with ABTS, the 50percent inhibitory concentrations (IC50) were (0.0429 ± 0.04 mg/ml) for aqueous, (0.0317 ± 0.04 mg/ml) for acetone and (0.0306 ± 0.04 mg/ml) for ethanol extracts while they inhibited DPPH radical with 50percent inhibitory concentration (IC50) values of 0.0646 ± 0.02 mg/ml (aqueous), 0.0482 ± 0.02 mg/ml (acetone) and 0.0422 ± 0.03 mg/ml (ethanol). The investigation showed that a positive linear correlation existed between the total phenolic content and antioxidant activity of the extracts and that these plants have strong antioxidant property and free radical scavenging capability. The in vitro antibacterial activities of Acacia mearnsii and Z. mucronata subsp. mucronata showed that their minimum inhibitory concentrations ranged between 0.039 mg/ml and 1.25 mg/ml. With the exception of acetone extract of A. mearnsii having MICs greater than 1.0 mg/ml for Enterococcus faecalis ATCC 29212 and Bacillus subtilis KZN, all other isolates had MICs less than 0.7 mg/ml. In all the bacteria treated with Z. mucronata subsp. mucronata extracts, Enterobacter cloacae ATCC 13047 had MIC greater than 1 mg/ml in methanol extract, Enterococcus faecalis ATCC 29212 and Staphylococcus aureus ATCC 6538 had MICs greater than 1 mg/ml in acetone extract while all other isolates were highly susceptible to the different extracts of Z. mucronata subsp. mucronata and had MICs less than 0.7 mg/ml. While aqueous extract was as active as the alcoholic extracts in A. mearnsii, that of Z. mucronata had no effect. The ethanol extracts exhibited the highest degree of antibacterial activity in both plants. This study, also, showed that the antifungal activity of A. mearnsii ranging 0.3125 – 5.0 mg/ml was higher than those of the different extracts of Z. mucronata subsp. mucronata ranging 1.25 – 10.0 mg/ml. It is evident from the results of the brine shrimp lethality assay that the crude extracts of A. mearnsii with the LC50 equaled 112.36 µg/ml and having the highest levels of toxicity (100percent) death at 500 μg/ml was non toxic (LC50 > 100 μg/ml) while the LC50 for Z. mucronata subsp. mucronata equaled 90.27 µg/ml indicated a low level of toxicity. The effects of combining the crude extracts of these plants with eight antibiotics were investigated by means of checkerboard and agar diffusion methods. On using the methanol extract of A. mearnsii, the agar diffusion assay showed that extract-kanamycin combination had zones of inhibition ≥ 20 ± 1.0 mm in all the bacteria tested (100percent), followed by extract chloramphenicol (90percent) > extract-ciprofloxacin = extract-tetracycline (70percent) > extract amoxicillin (60percent) > extract-nalidixic acid (50percent) > extract-erythromycin (40percent) > extract metronidazole (20percent). The checkerboard showed synergistic interaction (61.25percent), additivity/indifference (23.75percent) and antagonistic (15percent) effects. I, therefore, concluded that the antibacterial potentials of the antibiotics were improved and combining natural products with antibiotic could be a potential source of resistance-modifying agents useful against multi-drug resistant bacteria. The influences of these extracts on the ultrastructures, elemental components, protein and lipid leakages of five different bacteria were determined as the possible mechanisms of action of the extracts investigated. The scanning electron microscopy indicated varied ultrastructural changes in the morphology of bacterial cells treated with the extracts. The X-ray microanalysis showed significant differences between the elemental contents of extract-treated and untreated bacteria while lipids and proteins were leaked to a great extent from the extract-treated bacterial strains in comparison with the untreated ones. The possible mechanisms of action of the extracts may include inhibition of a significant step in peptidoglycan assembly, inhibition of metabolic processes, disruption of cell wall and cell membranes resulting in the efflux of lipid and protein in all the bacteria tested. The possible mechanism of action involved in the lipid and protein leakages in the bacterial cells could be attributed to lipid peroxidation and protein oxidation owing to the antioxidant activities of the extracts that were active beyond the protective levels. I concluded that the morphological changes and the observed leakages showed rapid killing, significant membrane depolarization resulting in leakages and efflux of disintegrated cellular materials. In general, this study has justified the ethnotherapeutic importance of A. mearnsii and Z. mucronata subsp. mucronata in the treatment of microbial infections by indicating the possible mechanisms of action of the crude extracts on the tested bacteria. , Thesis (PhD) -- Faculty of Science and Agriculture, 2012
- Full Text:
- Date Issued: 2012-08