https://commons.ufh.ac.za/vital/access/manager/Index ${session.getAttribute("locale")} 5 Bioconversion of chicken feather into amino acids and keratinase production by mesophilic Chryseobacterium proteolyticum and Pseudomonas aeruginosa isolated from municipal waste dumpsites https://commons.ufh.ac.za/vital/access/manager/Repository/vital:52720 1.5g/100g sample) of arginine (1.85), serine (1.63), glycine (1.9) and lysine (1.62); while P. aeruginosa GNFx feather hydrolysate showed high abundance of arginine, serine, aspartic acid, glutamic acid, glycine, alanine, valine, and leucine with respective concentration of 2.06, 1.67, 2.39, 3.05, 1.87, 1.73, 1.56 and 1.65 (g/100g sample). The results showed that keratinases from the two bacterial isolates were optimally active at pH 8, and temperature of 50 oC for FGNn keratinase and 50-60 oC for GNFx keratinase. The enzymes displayed remarkable pH stability. Keratinase from C. proteolyticum was catalytically inhibited by EDTA and 1,10-phenanthroline but not affected by PMSF; while P. aeruginosa keratinase was not significantly affected by those class of protease inhibitors. Adiitionally, FGNn keratinase demonstrated high residual activity of 90percent, 103percent, 101percent, 110percent, 130, and 105percent in the presence of DTT, hydrogen peroxides, acetonitrile, triton X-100, tween-80 and SDS, respectively. Similarly, catalytic efficiency of GNFx keratinase was promoted in the presence of hydrogen peroxides (119percent), triton X-100 (140percent), tween-80 (150percent) and SDS (147percent) compared to the control. Furthermore, the keratinases from the both bacterial isolates exhibited catalytic efficiency enhancement and remarkable structural stability in the presence of laundry detergents tested. The findings from the study suggest the application potentials of the isolates for the bioconversion of recalcitrant keratinous wastes into digestible and quality protein hydrolysates. The properties of these microbial keratinases indicate that they may be exploited for various biotechnological and industrial processes especially in the formulation of detergents.]]> Mon 04 Jul 2022 14:24:50 SAST ]]> Valorization of chicken feather through dekeratinization by keratinolytic Bacillus species to amino acid https://commons.ufh.ac.za/vital/access/manager/Repository/vital:45667 1.0g/100g sample) include arginine (1.8), serine (1.16), aspartic acid (1.95), glutamic acid (2.47), proline (1.16) and glycine (1.45). Bacillus sp. FHNM feather hydrolysates, contained (g/100g of sample): arginine (1.9), serine (1.4), aspartic acid (2.5), glutamic acid (2.51), glycine (1.51), proline (1.13), leucine (1.030, histidine (1.25), and lysine (1.06) (g/100g of sample) in high concentration. The keratinases were optimally active at pH 8.0. Bacillus sp. FHNM showed an optimal temperature of 100 oC; while Bacillus sp. NFH5 keratinase displayed optimal activity at 90 oC. EDTA and 1,10-phenanthroline inhibited the keratinases, and the inhibition pattern indicated that they belong to metalloprotease. Keratinase from Bacillus sp. FHNM showed considerable residual activity in the presence of Co²⁺ (93percent), Fe³⁺ (99percent), and K⁺ (94percent). Bacillus sp. NFH5 keratinase retained 92percent, 92percent, 93percent of the original activity against Ba²⁺, Na⁺ and Fe³⁺ treatment. Bacillus sp. FHNM keratinase was remarkably stable after 60 min of detergents treatment with residual activity of 89percent, 96percent, 81percent, 73percent, 96percent, 88percent, 88percent and 98percent for Omo, Surf, Ariel, Sunlight, Prowash, Freshwave, Sky, and Evaklin, respectively. Maq impacted the enzyme stability negatively, with residual activity of 48percent after 60 min of incubation. Additionally, keratinase Bacillus sp. NFH5 retained 68percent, 78percent, 80percent, 84percent, 57percent, 80percent, 98percent, 106percent and 106percent of the original activity against Omo, Surf, Ariel, Sunlight, Maq, Prowash, Freshwave, Sky and Evaklin, respectively. Therefore, these results suggest that Bacillus spp. could be ideal candidates for sustainable production of active keratinases and valorization of the abundantly generated keratinous biomass. The stability displayed by keratinases from Bacillus sp. FHNM and Bacillus sp. NFH5 suggests their promising candidacy for detergent formulation.]]> Fri 14 Jan 2022 12:17:38 SAST ]]>